
Wireless Sensor Networks

TU Delft

Faculty of Science of Education

E.H. van Tol-Homan

7st of March, 2013

Supervisory committee:

Drs. M.A.F.M Jacobs

Ir. H.J.A.M. Geers

Drs. M. Bruggink

Prof. Dr. M.J. de Vries

2 of 68

3 of 68

Abstract

Wireless sensing networks (WSN) are becoming more and more popular in different domains:
e.g. sport players would like to measure the results of their training immediately. Physiothera-
pist would immediately like to measure the results of the treatment of their client, during recov-
ering. Industrial companies would like to follow the production process.

This work has answered the following research questions:

How to develop a low-cost, reusable, and easy-to-use wireless sensing network for

a given use-case?

A prototype has been build, with open-source hardware and software, which demonstrates the
possibility of using the Arduino platform for WSN.

What is the best architecture to meet the requirements?

Research is done on different hardware architectures. As a result of this, the following architec-
ture structure is used in the prototype, a combination of Xbee, USB and 3G.

How to design a common protocol for sending sensor data?

The standardization is realized using a streaming protocol for sending and receiving data.

A prototype is developed for the Dispena football application FootballNote.com, where football
players can measure their exercises on the football field. The developed system will be used
as a base for further development for Dispena, as well be integrated into their software solu-
tions.

4 of 68

Index

Index ... 4

Table and figures .. 6

1 Introduction .. 8

1.1 The essentials of wireless sensing networks (WSN) ... 8

1.2 Problem description .. 9

1.3 Key requirements .. 11

1.4 Research question .. 12

1.5 Research scope and boundaries ... 12

1.6 Scientific relevance ... 12

2 Literature overview ... 13

2.1 Introduction and overview of Wireless Sensor Networks 13

2.1.1 Applications of Wireless Sensing Networks ... 13

2.1.2 Elements and topology of wireless sensor networks 14

2.1.3 Problems of wireless sensor networks ... 15

2.2 Sensor node ... 16

2.3 Wireless communication from sensor to base station .. 17

2.3.1 XBee .. 18

2.3.2 Wi-Fi .. 20

2.3.3 Bluetooth ... 21

2.3.4 Conclusion ... 22

2.4 The base station ... 22

2.4.1 USB streaming ... 22

2.4.2 Bluetooth ... 24

2.4.3 Conclusion ... 26

2.5 Serial Communication Protocol ... 26

2.6 Synchronization Protocols ... 28

3 Design ... 32

3.1 Use-case .. 32

3.2 Hardware architecture ... 34

3.3 Measurement .. 36

3.4 Hardware design ... 37

3.4.1 Motion sensor .. 38

3.4.2 Speed sensor... 38

3.5 Software protocols .. 39

3.5.1 Clock synchronization. ... 39

3.5.2 Protocol ... 39

3.6 Summary .. 40

5 of 68

4 Implementation .. 41

4.1 Motion sensor ... 41

4.2 Speed sensor .. 42

4.3 Base node .. 43

4.4 GUI ... 44

4.5 Tests ... 44

4.5.1 Testing the Xbee network .. 45

4.5.2 Testing the Motion sensor .. 45

4.5.3 Testing the speed sensor ... 45

4.5.4 Testing the synchronization of the exercise ... 45

4.5.5 Testing the battery consumption .. 45

4.6 Conclusion .. 45

5 Conclusions ... 46

6 Recommendations ... 49

7 Bibliografie ... 51

Appendix A: Use case examples ... 53

Appendix B: Arduino .. 58

Appendix C: Processing ... 65

Appendix D: Development of a new shooting-power sensor.. 66

6 of 68

Table and figures

Figure 1: Measuring sport performance .. 9
Figure 2: Measuring sport performance .. 9
Figure 3: WSN - Cloud Computing Platform .. 14
Figure 4: Typical architecture of WSN ... 15
Figure 5: Sensor network .. 16
Figure 6: Network protocol .. 17
Figure 7: Xbee system for reading Heart Rate .. 19
Figure 8: Xbee shield + Arduino .. 20
Figure 9: Wireless Sensing network .. 21
Figure 10: An Arduino-ADK connected to an Android Mobile Phone. 23
Figure 11: Connecting a MCU with a smartphone. .. 24
Figure 12: Amarino toolkit ... 25
Figure 13: Sending and receiving from base to sensor node ... 26
Figure 14: Timing in a WSN .. 28
Figure 15: Global Time versus Local Clock ... 28
Figure 16: TPSN package exchange between R and B ... 30
Figure 17: TPSN broadcasting synchronization process� ... 30
Figure 18: FootballNote application ... 32
Figure 19: On the field ... 33
Figure 20: Use-case diagram .. 33
Figure 21: MCU ... 36
Figure 22: Business Process Model .. 37
Figure 23: Parallax PIR sensor ... 38
Figure 24: Parallax X-Band motion detector .. 38
Figure 25: Use Case 2 .. 53
Figure 26: Use Case 3 .. 54
Figure 27: Use Case 4 .. 54
Figure 28: Use Case 5 .. 55
Figure 29: Use Case 6 .. 55
Figure 30: Use Case 7 .. 56
Figure 31: Mindmap .. 57
Figure 32: Arduino .. 58
Figure 33: Arduino IDE .. 58
Figure 34: Diagram of the Arduino .. 59
Figure 35: Serial monitor ... 59
Figure 36: Temperature sensor with the Arduino ... 60
Figure 37: Asynchrony Serial Communication ... 62
Figure 38: Processing ... 65

7 of 68

Table 1: Key requirements for a WRN as defined by Dispena Solutions 11
Table 2: Common wireless standards and the consequence. .. 17
Table 3: Mobile connectivity with Bluetooth ... 22
Table 4: Compliance table of system requirements ... 24
Table 5: Mobile connectivity with Bluetooth ... 25
Table 6: Connection of base node to internet .. 26
Table 7: Sending command .. 27
Table 8: Receiving data .. 27
Table 9: Prices of Arduino parts .. 35
Table 10: Prices of alternative boards ... 35
Table 11: Main actions of the measurement .. 37
Table 12: Motion sensor - implementation ... 41
Table 13: Speed sensor - implementation ... 42
Table 14: Base node - implementation .. 43
Table 15: GUI - implementation .. 44
Table 16: Key requirements in the proof of concept .. 47
Table 17: Platform independency .. 49
Table 18: New protocol ... 50
Table 19: XML output example ... 50
Table 20: TTL and USB protocol ... 63
Table 21: Serial Communication ... 64
Table 22: Support of the Processing language .. 65

8 of 68

1 Introduction

With the upcoming technique of wireless sensing networks (WSN) it becomes possible to
seamlessly couple the physical environment with the digital world. Since it became possible to
develop low-cost wireless networks, the implementation of wireless sensor networks to moni-
tor physical or environmental conditions has become possible, such as temperature, sound,
pressure etc., and to cooperatively move data through the network to a main server.

1.1 The essentials of wireless sensing networks (WSN)

Wireless sensor networks make it possible to integrate devices with the virtual world of the
Internet, and to interact by tracking, sensing, and monitoring objects and their environment.
The essence of wireless sensor networks is that a wireless sensor networks device can gen-
erate and retrieve information about and from objects and their environment. Wireless sensor
networks combine three pieces of equipment: a microcomputer, a sensor, and wireless data
communication. A sensor is a device that can measure a physical phenomenon (like tempera-
ture, radiation, humidity). A list of wireless sensing networks elements relevant for low-cost
development is given here.

In the 1960’s, the standard cable protocol RS-232 was created and published by the Electron-
ics Industry Alliance (EIA). It is a standard interface for data streaming.

In 1994, Bluetooth started a wireless technology standard for exchanging data over short dis-
tances, using short wave-length radio transmission for fixed and mobile devices. The created
network was called “Personal Area Network”. The main difference with the standard cable pro-
tocol RS-232 is that Bluetooth can connect several devices simultaneously.

In 1999, another standard had been developed, i.e. Wi-Fi. This technology allows an electronic
device to exchange data using radio waves over a computer network, and is based on the
802.11 standard.

In 2005, a company started to develop the Xbee which was based on the 802.15.4-2003
standard. This standard is designed for point-to-point and point-to-multipoint communication.
Between 2005 and 2011, various versions of Xbees were developed using the Zigbee proto-
col, using a “Personal Area Network” similar to that of Bluetooth.

Also in 2005, in Ivrea (Italy), a prototype platform –called Arduino- was initiated (at the Olivetti
company). With the Arduino it became, possible to make a cheap prototype of a system for
electronics system development. The founders of Arduino - developers at Olivetti - Massimo
Banzi and David Cuartielles named the prototype “Arduino” after Arduin of Ivrea, which also
means “brave friend”. Information about the Arduino can be found in Appendix A.

In May 2011, a total of 300,000 Arduino’s had been sold; more and more people started using
an Arduino for measuring an object’s environment. In combination with the above mentioned
techniques (Bluetooth, Wi-Fi and Xbee) projects were initiated to make wireless sensing net-
works.

Combining the Arduino and wireless communication, low cost wireless sensor networks be-
came possible. In 2011, companies started to provide services such as Pachuba to store data.
Pachuba is a web service that enables someone to store, share real-time sensor data, ener-
getic and environmental data from objects, devices and buildings around the world.

9 of 68

Once a successful prototype had been built with the above techniques, it had to be translated
into an electronic scheme in order to get it into production. In order to build the electronic
scheme, the graphical editor Fritzing can be used. Fritzing is an open source program de-
signed for bringing a prototype into production. It generates schematic PCB (Printed Circuit
Board) production files, which can then be produced.

No matter what device is used, the idea behind wireless sensor networks is to measure the
physical world around the object. The goal is to seamlessly couple the physical environment
with the digital world, thus enabling a user to gather information about physical phenomena.

1.2 Problem description

Dispena Solutions1 would like to develop applications for wireless sensor networking and to
provide private data storage. An internal report from Dispena Solutions gives an overview of
possible wireless sensor networking systems (Appendix B), and these use-cases form the
basis of this research.

There are two main branches, where this company would like to use WSN:

 Sport: Measuring individual sport performance.
When the sport performance of individual players is measured, the training can adapted,
based on the test results. Dispena developed a training program for football (soccer) play-
ers. Embedded in this application, Dispena would like to measure the sport performance of
the players. In figure 1, an example is given of what has to be measured during a slalom.
Dispena would like to have a system, which measures the intermediate time of a slalom
continued by measuring the shooting power, when shooting the football into the goal.

Figure 1: Measuring sport performance

Short list of activities: Measure time at slalom at pole 0 to 5; Measure speed of ball; Display
Result of Single Player; Send values into the database.

 Industry: Measurements during production processes.
Dispena would like to have a low-cost system for measuring a part of the production pro-
cess. After an object is identified by reading a RFID-chip, a list of physical phenomena must
be measured. In figure 2, an object is identified followed by measuring e.g. temperature,
weight, or size.

Figure 2: Measuring sport performance

1 The company where this research is initiated.

10 of 68

The two given use-cases are totally different, but the way of measuring has the following in
common:

 Each sensor is physically in another place, within 40 meters.

 The data are read in sequence. In case of the sport example, the times when reaching
pole one, two, three, four and five are measured in a sequence. In the second exam-
ple, after identification the temperature and weight are measured.

 The use-case use the following sensor types:
o Sensors, which detect the occurrence of a phenomenon, such as movement, in

values of 1 or 0 (movement vs. no movement) at a certain point in time. These
sensors are called: Digital Sensors. Digital sensors produce a binary output
signal in the form of a logic “0” or “1” per bit. The bits can be combined to make
a byte (parallel transmission).
A common example is a switch: which generates one of two states: on / off; or
in the football example, detecting that the player has passed a pole.

o Sensors, which measure the strength of the physical phenomenon, where the
timing is less important. These are called: Analog Sensors. An analog sensor,
such as a thermistor (a resistor where the resistance depends on the tempera-
ture), is integrated into a circuit, which will output a specific voltage, usually be-
tween 0 and 5 Volts. The signal is continuous in time and amplitude. The output
is converted with an Analog-Digital Converter into a numeric value. These type
of sensors could measure for example: Acceleration (Measuring the accelera-
tion in x, y and/or z.), temperature, humidity, distance, light, weight, etc.

11 of 68

1.3 Key requirements

Together with Dispena Solutions, a list is made with the requirements (table 1) that should be
met for their use-cases.

Table 1: Key requirements for a WRN as defined by Dispena Solutions

 Key requirements Example

1 Reusable for above specified type of

use-cases.

The solution must be reusable for the use- cases, which

are described in Paragraph 1.2.

2 Save data over the Internet An individual player (and their trainer) would like to ana-
lyze the data over a period of time, and compare these
with those of other players. This has as a consequence
that the data had to be stored in a database-server.

3 Use one or more sensors, wirelessly,

in a sequence.

A football player would like to measure the time he needs

for doing a certain exercise, in this case the time of a the

slalom is measured, by measuring the motion at the indi-

vidual football poles, ending with measuring the shooting

power.

The distance between the sensors, will be 80 meters max-

imum.

4 Coordinate and synchronize sensors. Measuring the time during a football slalom has as a con-

sequence that the sensors had to be somehow synchro-

nized. One common clock had to be used in order to

measure the time difference between the sensors.

5 Contains a Graphical User Interface In all cases the application itself should have a graphical

interface to visualize the intermediate results.

6 Use Plug and Play, with easy setup. The required knowledge for setting up the WSN should be

minimalized. The system had to work as plug and play/

measure.

7 Easy to maintain. The maintenance of the WSN should be minimal, No spe-

cific experience required.

8 Low cost. Easy to set-up, easy to maintain and low cost are usually
important requirements from marketing and sales per-
spective.

9 Use existing hardware The hardware should be everywhere available and stand-
ard.

12 of 68

10 Reduce energy consumption A sensor node consists of a processor, memory, wireless
modem and a power supply. It is essential, to have a low
energy consumption.

1.4 Research question

The basic research question are:

How to develop a low-cost, reusable, and easy-to-use wireless sensing network ?

What is the best architecture to meet the requirements?

What protocol should be used ?

PROOF OF CONCEPT

The sport example will be implemented and built as a proof of concept as a possible im-
plementation of a WSN network for this use-case.

1.5 Research scope and boundaries

The research scope and boundaries are defined by the research questions as posed in the
previous paragraph, and the applications are based on the market opportunities as seen by
Dispena Solutions.

1.6 Scientific relevance

This research is innovative and scientifically relevant since it is focused on the current lack of
existing low-cost, and reusable Wireless Sensing Network, Chapter 2, Jiang [1]).

13 of 68

2 Literature overview

The literature study focused on the research questions: How to develop a low-cost, reusable,

and easy-to-use wireless sensing network?; What is the best architecture to meet the require-

ments?; And what protocol should be used? The literature study is therefore split into:

Paragraph 2.1: Introduction and overview of Wireless Sensor Networks

Paragraph 2.2: The sensor node

Paragraph 2.3: Wireless communication form sensor to base station

Paragraph 2.4: The base station

Paragraph 2.5: Serial Communication Protocol

Paragraph 2.6: Synchronization Protocols

2.1 Introduction and overview of Wireless Sensor Networks

This chapter gives an overview of applications, challenges, problems and solutions for WSNs.

A wireless sensor network consists of sensors to cooperatively monitor physical or environ-
mental conditions. This chapter summarizes two publications i.e. “Survey of applications of
wireless Sensor Network using Cloud “ by Dash [1], and an “Introduction and overview of
Wireless Sensor Networks” by Jiang [3]. They describe the techniques behind wireless sensor
networks in the Cloud.

2.1.1 Applications of Wireless Sensing Networks

Wireless sensor networks are used in different domains throughout the world. Dash [1] makes
a division into the following application scenarios (see figure 3).

 Transport: The transport monitoring system includes basic management systems like

traffic signal control, navigation, automatic number plate recognition, toll collection, etc.

 Military Use: Sensor networks are used in the military for Monitoring friendly forces,

equipment and ammunition, Battlefield surveillance, Targeting, biological and chemical

attack detection, etc.

 Weather forecasting: Weather forecasting is the application to predict the state of the

atmosphere for a future time and a given location. Weather monitoring and forecasting

systems include: Data collection, Data assimilation, Numerical weather and forecast

prediction.

 Health care: In some modern hospitals sensor networks are constructed to monitor

physiological data of patients, to control the drug administration track and to monitor

patients reaction.

14 of 68

Figure 3: WSN - Cloud Computing Platform

The literature separates wireless sensing networks based on their domains and not on use-
case types. The reason for this is the domain dependency of use-cases, as described above.

2.1.2 Elements and topology of wireless sensor networks

Dash [1] describes a wireless sensor network as a system consisting of spatially distributed
autonomous sensors to cooperatively monitor physical or environmental conditions, such as
temperature, sound, vibration, pressure. An overview of important terms described by Dash is:

1. Sensor node: A basic unit in a sensor network, with processor, memory, wireless mo-

dem and power supply.

2. Network topology: A connectivity graph with nodes and edges, and links.

3. Routing: the process of determining a network path from resource to destination.

4. Resource: A combination of sensors, communication links, processors, memory, and

node energy.

5. Data storage: the storage can be local on the node (where the data is generated), or at

a server.

A typical architecture is given in figure 4. In order to overcome the distance between the sink
node (or in other literature, often called base node), sensor nodes are often re-sending the
information to the next nearest node close to the sink node.

15 of 68

Figure 4: Typical architecture of WSN

Dash [1] focuses on the end-user, somewhere in the Cloud, and describes that it makes a lot
of sense to integrate sensor networks with the Internet, meaning that data (of a sensor net-
work) should simultaneously be available at any time, at any place. It is pointed out that Cloud
computing strategy can help business organizations to conduct their core business activities
with less hassle and greater efficiency. Companies can maximize the use of their existing
hardware using Cloud computing in combination with wireless sensing.

2.1.3 Problems of wireless sensor networks

Jiang [3] provides a list of difficulties in the development of WSNs.

 The limitation of resources of the sensor nodes: Many wireless sensor have limited re-
sources such as a small memory, weak computational capacity, limited energy, and/or
a narrow bandwidth.

 The lack of a common architecture: Due to big differences among different applications
and domains, many different operating systems, routing protocols and wireless com-
munication approaches have been developed, which is a big obstacle for generality.

 The lack of unified sensors: Existing WSN’s use sensor nodes, which are not standard-
ized. For example, there are various type of sensors e.g. for measuring detecting gas,
temperature, humidly, or vibration.

16 of 68

Conclusion derived from Dash [1] and Jiang [1]

Jiang [3] explains the current limitation of wireless sensor network, i.e. generality and lack of
common architecture.

Dash [1] shows the upcoming uses of WSN in different domains, this applies the further needs
of research on WSNs.

Dash [1] uses a base station (figure 4) as the gateway between the sensor nodes and the
internet. However, Dash does not give a definition of the base station. However, it could be
derived, from the article that the base station has the role of a collector.

Paragraph 2.2 gives an overview of wireless techniques for connecting the sensor node to a
base station. Paragraph 2.3 focuses on the bridge between the base station and the internet.

2.2 Sensor node

A sensor node (figure 5) consists of a basic unit in a sensor network, with processor, memory,
wireless modem and power supply (paragraph 2.1, Dash [18]).

Figure 5: Sensor network

The sensor node is wirelessly connected to the base station.

17 of 68

2.3 Wireless communication from sensor to base station

The type of the wireless modem has consequences for the possible network topology. Figure 6
gives an overview of common network topologies. However the bus and ring networks are not
applicable for WSNs and are only used for wired networks.

Table 2 gives an overview of common wireless standard networks and the possible network
topology for each type of wireless network.

Figure 6: Network protocol

 Table 2: Common wireless standards and the consequence.2

Let us look at the different options more closely:

2
 Copied from “Software Technology group:” http://www.stg.com/wireless/ZigBee_comp.html

http://www.stg.com/wireless/ZigBee_comp.html

18 of 68

 ZigBee: ZigBee is used for high level communication protocols using small, low-power
digital radios based on an IEEE 802 standard for personal area networks.

 802-11 (Wi-Fi): this technology allows an electronic device to exchange data wirelessly
(using radio waves) over a computer network

 Bluetooth: Bluetooth is a wireless technology standard for exchanging data over short
distances (using short-wavelength radio transmissions) from fixed and mobile devices,
creating personal area networks (PANs) with high levels of security

 Ultra-Wide Band: Ultra-wide Band is a radio technology pioneered by Robert A. Scholtz
and others, and may be used at a very low energy level for short-range, high-
bandwidth communications.

 Wireless USB: Wireless USB is a short-range, high-bandwidth wireless radio commu-
nication protocol created by the Wireless USB Promoter Group.

 IR Wireless: IR wireless is the use of wireless technology in devices or systems that
convey data through infrared (IR) radiation.

Based on the table, possible candidates techniques for connecting the sensor node to the

base station are:

 Xbee

Base Node XBee Multiple sensor nodes

 Bluetooth

Base Node Bluetooth Multiple sensor nodes

 Wi-Fi

Base Node Wi-Fi Multiple sensor nodes

2.3.1 XBee

XBee is a brand name of Digi International for a family of compatible radios. It is based on
more advanced wireless technologies, and is widely integrated in home automation all over
the world. XBee is the radio and ZigBee is the communication protocol for XBee radios.

Compared to Bluetooth, XBee is more efficient in its power management, it has a wider work-
ing range, and has a very stable and bug-free protocol, including checksums.

19 of 68

XBee and Arduino
The XBee radio has a range from 40 up to 120 meters (outside). The XBee radio can operate
alone, without the use of an Arduino for sensing or forwarding control signals. The XBee has
four analog input pins, and eleven digital input/output pins. Since the XBee uses a radio, it
needs an internal or external antenna, wire or chip.

The publication “Using Xbee transducers for wireless data collection” by Ayars [3], explains the
use of Xbee for measuring the physical world. Ayars describes that teachers today have an
amazing array of sensors available for use in teaching laboratories; these are often individual
sensors that can measure capacitance, temperature, humidity, barometric pressure, GPS co-
ordinates, magnet field, orientation in space, and many other physical properties. Ayars de-
scribes that the use of Xbee is promising in facilitating measurements for standalone single
sensor networks that would not otherwise be possible.

“Xbee Wireless Sensor Networks for Heart Rate Monitoring in Sport Training” from Zulkifli [4]
gives an example of a sensor (which Dispena Solutions would like to use in their FootballNote
application). Heart Rate Monitors are becoming popular, and are widely used in various sports.
The principle (figure 7) is simple, a user is wearing the heart rate strap on the chest. A receiver
reads the values.

Figure 7: Xbee system for reading Heart Rate

Conclusion derived from Ayars [3] and Zulkifli [4]

Ayars [3] describes and tested that the use of Xbee is promising in facilitating measurements
that would not otherwise be possible. However, the author writes that there are significant
technical details which must be dealt with in order to set up XBee transducers as wireless
sensors, since the initialization process of Xbees is not straightforward. However, once the
initialization process is done, the Xbees works as expected. The initialization process requires
the use of a specific configuration tool3. With this tool, the Xbee radios can be updated to the
last firmware, and had to be used for configuring the exact address of the radio’s as well set-
ting the (wireless) PAN identification. It is used for different technologies such as: Bluetooth,
Wireless USB, XBee, etc.

3
 In order to update the low-level firmware of Xbee radio’s, the Digi’s configuration tool, X-CTU needs to be used.

Note: the program is only available for Microsoft Windows operation systems.

20 of 68

This should be taken into account during implementation of the Xbee in a project. Ayars indi-
cate that a possible solution could be the use of Xbee radios for wireless sensor nodes.

Zulkifli [4] developed a system for measuring multiple heart rates. Looking at the network
topology one receiver is used, acting as a base node. The role of this base node, is collecting
the data from different sensors and visualize the data.

Figure 8, shows the Xbee shield, which allows an Arduino board to communicate wirelessly

using Zigbee.

Figure 8: Xbee shield + Arduino

2.3.2 Wi-Fi

W-Fi allows an electronic device to exchange data wirelessly (using radio waves) over
a computer network, without needing to plug in an Ethernet cable. Once connected to a wire-
less router (WLAN), it supports single connection to a router. It could be compared with an
Ethernet connection, since it only differs in implementation of the OSI layer one and two. On
top of OSI layer three and four, IP, and TCP or UDP can be used for transferring data. An ex-
ample software implementation of this technique with Arduino uses Client/Server Architecture,
where a server has a coordinator role.

Figure 9 shows an example of a Wi-Fi sensor network.

21 of 68

Figure 9: Wireless Sensing network
4

2.3.3 Bluetooth

Bluetooth is a short-range wireless communications technology used to communicate between
devices over a distance of up to about 8 meters. The most common Bluetooth devices are
headsets for making calls or listening to music, hands-free kits for cars, and other portable
devices, including laptops. Bluetooth is widely used, and embedded in all mobile devices.

Bluetooth networks are like LANs, but are not implemented in the OSI model, because they
are only used for point-to-point communication between devices close together. Bluetooth is in
fact just a wireless replacement for a serial cable.

For Bluetooth devices to connect to each other so they can work together, they need to be
paired. Pairing or bonding means that the two devices are exchanging their passwords or
passkeys. Once paired, all of the data that is sent between the two devices is encrypted,
meaning that any device that is not paired with the other two is unable to translate the data.

Since the distance between two nodes must be not more than 8 meters, it will not be suitable
for the sensor network.

4 Example of a Wi-Fi sensing network: http://www.reesscientific.com/products-services/wireless-and-wifi-system

http://www.reesscientific.com/products-services/wireless-and-wifi-system

22 of 68

2.3.4 Conclusion

Based on the literature, Xbee is most suitable for connecting a Sensor Node to the Base sta-
tion, see table 3. The Xbee technique will be considered for the described problem (see chap-
ter 1).

Table 3: Mobile connectivity with Bluetooth

Technique Sensor Node >> Base station

Xbee Suitable for a range up to 120 meters.

Bluetooth Only suitable for small networks, and a distance smaller than 8 me-
ters. A master Bluetooth device can communicate with a maximum of
seven devices in an ad-hoc computer network.

Wi-Fi A Wi-Fi device had to connect to a wireless access point in order to
access the Internet. However, an Wireless access point is not availa-
ble outdoor, therefore a Wi-Fi is not considered as possible solution
for these type of use-cases described.

2.4 The base station

There are two types of nodes. One is the normal sensor node deployed to sense the phenom-
ena and the other is a gateway node, this node is to interface the sensor network to the Inter-
net; we call this the base station.

The task of the base station consists for the described problem (chapter 1) of two parts:

- Displaying the data. For this a Graphical User Interface is required, which could be re-
alized using a mobile device.

- A wireless connection to the internet.

As a consequence of this, the research will be focused on wireless networks including a con-
nection with a mobile device.

This chapter describes the research done on connecting a base station to the internet. De-
pending on the application, the base-station can be connected to the internet using:

 USB streaming

Mobile USB Base Node XBee Multiple sensor nodes

 Bluetooth

Mobile Bluetooth Base Node XBee Multiple sensor nodes

2.4.1 USB streaming

The connection between a mobile device and a Arduino could be realized over USB. For this
Google developed an Android Development Kit (ADK), which makes it possible to connect an
Arduino with mobile devices running the Android Operating System. In order to use this func-

23 of 68

tionality an Arduino-ADK board is required. The Arduino-ADK compares with the standard Ar-
duino but it is slightly bigger and has an extra USB port.

The Arduino board acts as an accessory to an Android device. An Android accessory is a
physical accessory that can be attached to an Android device. When connecting the Arduino-
Adk board to an Android device, the Android device will recognize the Arduino-ADK (as plug-
and-play), and through identification the correct Android application will show up.

Figure 10: An Arduino-ADK connected to an Android Mobile Phone.

One of the strongest points of this technique, the mobile phone, can be used for running a
Graphical User Interface, which is one of the key requirements.

The USB-host capability of the Arduino-ADK makes it possible to communicate (as an acces-
sory) to the mobile device:

The accessory controls the board, detects it and sets up the communication with the Android
mobile device, as follows [5]:

 Wait for and detect connected devices.

 Determine the devices accessory mode support.

 Attempt to start the device in accessory mode.

 Establish communication with the device.

 Start the required application.

In August 2012, Brandt wrote a thesis about this subject titled: “Efficient data collection using

Android ADK in a high velocity, mobile environment” [6]. Brandt [6] uses the Arduino-ADK con-

nected to a mobile device, see figure 11.

24 of 68

Figure 11: Connecting a MCU with a smartphone.

The mobile Android equipment receives the sensor data from the MCU accessory through
the USB cable and displays the average of the four sensor on its screen; it either records the
data before sending it to the server or directly streams the data to the server.

Conclusion derived from Brandt [6]

Brandt concluded that the Arduino-ADK in combination with a mobile can be used as gateway
to the Internet, however needs some more research on the performance. Table 4 shows the
compliance requirements of the system, which are moderate.

Table 4: Compliance table of system requirements

2.4.2 Bluetooth

Bluetooth is a standard wireless technology for exchanging data over a short distance using
radio. It works with mobile devices, creating –as with Xbee- a Personal Area Network (PAN).

As described in paragraph 2.3.3, the phone and a device have to be paired before connecting
is possible. The processes of pairing a phone with a device and using it for sensing data is
shortly described in this chapter.

The thesis “Design and implementation of a toolkit for the rapid prototyping of mobile ubiqui-
tous computing” [7] by Kaufmann focuses on the development of a library for Arduino-Adk
(platform), using Bluetooth for connection with a mobile device (figure 12), with the following
goals:

- Simple use (beginners).

- Extensible (experts).

- Open (community).

25 of 68

Figure 12: Amarino toolkit

Kaufmann [7] describes the process of the development of a library for connecting a Sensor
Node (including Bluetooth) with a Mobile Device (figure 12). However, not all mobile operating
systems are suitable (Table 5).

Table 5: Mobile connectivity with Bluetooth

Conclusion derived from Kaufmann [7]

Kaufmann concluded that the described WSN is suitable for a connecting a single Bluetooth
device to a mobile.

The integration with an iPhone was realized by Alasdair [8] in 2012.

26 of 68

2.4.3 Conclusion

Based on the literature on connecting the base station to the Internet, Bluetooth or USB-
streaming could be used (table 6). This will be further investigated, when applying the data
from the literature to the problem described in chapter 1.

Table 6: Connection of base node to internet

Technique Base node >> Internet

Xbee

Wifi

Bluetooth

USB Streaming

2.5 Serial Communication Protocol

Sending information in the network can be realized using a Simple Serial Communication Pro-
tocol Based on the Wireless Sensor Network”, Liu [9], and figure 13.

This protocol can be used for Xbee, Bluetooth and USB Streaming.

In wireless communication systems, the error code rate is high due to external interference. As
a consequence, the protocol used for transformation has to be reliable. The core solution cre-
ates a frame header including a stream of bytes with a frame end, and an error checksum. The
error checksum is used to see, if a package did receive properly. When the checksum is not
correct, the message could be resend.

Liu [9] describes the following structure for sending a request command (table 7), and receiv-
ing data back from a node (table 8).

 Send command

Data

Figure 13: Sending and receiving from base to sensor node

Base

Node

Sensor

Node

27 of 68

Table 7: Sending command

 Frame header: the beginning of the command frame.

 Address: destination address.

 Command type: type of command, for example, reading/writing, etc.

 CRC: Correction checksum.

 Frame Tail: The last byte of the frame.

Table 8: Receiving data

 Frame header: the beginning of the command frame.

 Original Address: address from the sender.

 Command type: type of data.

 Testing data: the test data.

 CRC: Correction checksum.

 Frame Tail: The last byte of the frame.

 CONCLUSION DERIVED FROM LIU [9].

Liu concluded that the Serial Communication Protocol could be suitable for WSNs. However, it
had to be adapted for the precise application, since a part is application dependent.

“Beginning Android ADK with Arduino” [5] by Bohmer describes the same protocol for sending
data from an Android-ADK to a mobile device.

28 of 68

2.6 Synchronization Protocols

A WSN does not have a common clock. Therefore, a timing protocol is required. This chapter
will give an overview of the issues in time, followed by some important synchronization proto-
cols.

Issues on timing

When sending data over the radio from sender to receiver, there will be a delay in receiving.

Figure 14: Timing in a WSN

As shown in figure 14, there are four types of delay in a WSN: send time, access time, propa-
gation time, and receive time. The send time is that of the sender needs to construct the mes-
sage to transmit on the network. The access time is the time, required to access the network.
The time for the bits to by physically transmitted on the medium is called the propagation time.
Finally, the receive time is the delay in receiving the message. The major problem of time syn-
chronization is not that this packet delay exists, but how to synchronize it.

 To synchronize to global time (figure 15), a node must compute the offset between its
local clock and the global time as well as rate at which its clock is drifting slower or
faster than global time.

Figure 15: Global Time versus Local Clock

29 of 68

Synchronization protocols

For this the following synchronization protocols were found in the literature:

 Reference Broadcast Synchronization (RBS) is a method in which the receiver uses
the physical layer broadcasts for comparing the clocks.

A third system will broadcast a beacon to all the receivers (sensor nodes). The beacon
does not contain time information; it will be only used to compare the relative offsets.
The timing is based on when the node receives the reference beacon.

In a simple form, there are one broadcast beacon and two receivers. The timing packet
will be broadcasted to the two receivers. The receivers will record when the packet was
received according to their local clocks. Then, the two receivers will exchange their tim-
ing information and be able to calculate the offset. This is enough information to retain
a local timescale.

 Timing-sync Protocol for Sensor Networks (TPSN)
This protocol is specific for a multi-hop WSN, where the communication between two
end nodes is carried out through a number of intermediate nodes whose function is to
resend information from one point to another.

TPSN is a traditional sender-receiver based synchronization network that uses a tree;
this tree is used to organize the network topology, where each node is assigned to a
level. The level indicates the time in sending and receiving. The construction consist of
a root node and all nodes are synchronized to the root in levels. The concept is broken
into two phases: the level discovery phase and the synchronization phase. The level
discovery phase creates the hierarchical topology of the network wherein each node is
assigned a level. Only one node resides on level zero, the root node. In the synchroni-
zation phase all i level nodes will synchronize with i-1 level nodes. This will synchronize
all nodes with the root node.

 Flooding Time Synchronization Protocol (FTSP)

FTSP is a variant of the TPSN protocol for a multi-hop WSN, where the latter is bring-
ing down the number of synchronization messages which are sent over the network.

 Variant of Timing-sync Protocol for Sensor Networks (TPSN) for Star-structure net-
works

This variant gives some energy reduction for Star-structure networks.
When the number of synchronization message is reduced, it will give some energy re-
duction. The described problem (Paragraph 1.2) uses a star-network structure. There-
fore, this protocol will be discussed in more detail.

30 of 68

Timing-sync Protocol for Sensor Networks (TPSN) in a
Star-structure

The article “Clock Synchronization Method for Star-Structure Wireless Sensor Network” by Li
describes a TPSN synchronization protocol adapted for a star-structure. The star-structure is
often used in networks, where the distance between the base-node and sensor-node is small.

The standard clock synchronization protocol TPSN requires a high synchronization accuracy,
to overcome clock frequency drifting between nodes, a large number of synchronization mes-
sages. This means that for a star-structure networks with n child sensor nodes a total of 2n
synchronization packages is required.

Li describes a system for synchronization in star networks where a TPSN broadcasting system
is used, to bring down the number of synchronization packages. This protocol will be de-
scribed in this chapter.

Suppose Node A is sending to Node B at timestamp T1, Node B will receive the signal at
timestamp T2. When B is sending a timestamp back at time T3, it will arrive at timestamp T4.

Figure 16: TPSN package exchange between R and

B

Figure 17: TPSN broadcasting synchronization pro-
cess�

The time can be calculated as follows:

(1)

(2)

The clock deviation between root node R and B can be calculated as follows:

(3)

31 of 68

The transmission delay will be:

(4)

The clock deviation (shifting) between the root node is calculated with formula 3, where the
transmission delay can be calculated with formula 4.

Using TPSN broadcasting to synchronize the root node, a random node is selected as the
respond node. All nodes receive the synchronization signal, but only one node will respond to
it, that is in figure 16 node B. Node A and C will record the information and compare it with
their own local times. When the root node receives the timing back from note B, it will calculate
the transmission and deviation delay. This information is sent to the other nodes, and is used
for recalculating the transmission and deviation delay based on the extra offset of B. This way,
the number of synchronization packages is reduced to 3.

Using the TPSN broadcasting method, the number of synchronization packages is only 3
packages. If the conventional TPSN is used in star networks, 6 packages are required, and
synchronization communication costs will be significantly reduced.

This protocol is tested by Li on star-networks. It can be concluded, that aiming at a star-
structure, employing broadcasting synchronization and self-correction of local clock, signifi-
cantly reduces communication cost on the base of ensuring certain synchronization accuracy.

32 of 68

3 Design

The design of the prototype for measuring the performance of a football player is given in this
chapter.

3.1: Use case
3.2: Hardware Architecture
3.3: Measurement
3.4: Sensor node
3.5: Clock synchronization
3.6: Streaming protocol

3.1 Use-case

Dispena developed a training program for football (soccer) players, see figure 18. Embedded
in this application, Dispena would like to measure the (sport) performance of players, because
when the sport performance of individual players is known, an individual training program
could be created; the same way a Cooper test is used, which tests the physical fitness of a
person, a football player could be tested on his sport performance on the field.

Figure 18: FootballNote application

The prototype must consist of a system for monitoring a football player during his exercises.

During a training, a football player often trains on a slalom continued with a shoot (into the

goal).

The prototype should measure the intermediate times during the slalom, followed by measur-
ing the shooting power; see figures 19 and 20. The player should see his results on a screen.
All data should be stored in a database in the Cloud, where the FootballNote application can
fetch the data.

33 of 68

Figure 19: On the field

Figure 20: Use-case diagram

34 of 68

3.2 Hardware architecture

Based on the literature described in chapter 2, a decision should be made on the Wireless
modems. Since the system should have a Graphical User Interface showing the intermediate
results of the football player, a mobile device is required. The decision on which type of mobile
device and which OS will be used has a direct influence on the software development. The pro
and cons of different solutions will be given in this chapter.

The network can be split into two parts, namely the part connecting the multiple sensors to the
base node, and the connection between the base node and mobile device.

 Base Node XBee Multiple sensor nodes

Concerning the WNS network for connecting multiple sensor to the base node, the
best suitable solution is using Xbee. The two most common RF radios that are availa-
ble from Digi are the Series 1 and Series 2 XBee. The Series 1 and Series 2 modules
are quite similar, but selection of a module should be based upon application specific
needs. In this case, where a star network is required, the Series Xbee radio is needed.

 Mobile USB or Bluetooth Base Node

For the connection between the base station and the mobile, there are two possible
options, namely Bluetooth and USB. The (extra) costs of a Bluetooth module are ap-
proximately € 50. Using Bluetooth, there is no limitation in the type of Operating Sys-
tem on the mobile device, since Bluetooth is widely supported. However, this means
extra costs (which is in contradiction with the key-requirement “low-cost”), and requires
a specific setup on the mobile device, which is in contradiction with the key require-
ment “plug-and-play”. When USB would be used, this has as consequence that the
mobile device should run the Android OS. When connecting the base station (an Ar-
duino-ADK board) to an Android device, the Android device will recognize the board
(as plug-and-play), and through identification the correct Android application will show
up. This makes the solution “plug-and-play”. However, currently not all mobile devices
running the Android OS support the USB mode. Secondly, an Android OS version 2.3
or above is required. Currently, most devices are supplied with version 4.0, so the latter
should not be an issue in the future.

35 of 68

Based on these pros and cons the system will consist of:

o Arduino + Xbee series 2 radios for the sensor nodes.

o Arduino ADK and USB interface for the base node.

o A mobile device running the OS Android. For the development, I have chosen

the HTC desire S running Android OS version 2.4.

Design costs

In table 9, the costs of each individual product is given. The prices are based on an average of
different suppliers, and are a mend as indication.

Table 9: Prices of Arduino parts

Product Costs

Arduino $30

Arduino-ADK $70

Arduino-Shield (optional) $15

Xbee series 2 $25

Xbee series 2 – Pro $38

Bluetooth $60

Wi-Fi (called: WiFly) $35

USB $3

This are the costs for prototyping and or for individual projects. The Arduino – Uno costs
around $30, however, the chips itself costs around $3 and easily available at distributors. The
difference in cost of the chip in compares to the Arduino – Uno prototype board, is the pro-
gramming facility (for an Arduino the programming is done through the UART requiring an
RS232 to USB converter).

The connection with the base station could be realized using Xbee series 2. This is the cheap-
est solutions to realize a WSN network. The connection with the mobile device (which runs the
Graphical User Interface) can be realized using USB or Bluetooth. Because of the low price is
this the best solution, however not all mobile devices support a USB connection.

The minimum price of a mobile device running the Operating System Android and supporting
USB is around $150.

As an alternative to the Arduino another electronic board could be chosen. A comparison is
made in table 10.

Table 10: Prices of alternative boards
5

Product Price Pros and cons

Arduino-Uno

$30

Arduino is an open-source electronics proto-typing
platform based on flexible, easy-to-use hardware and
software.

BeagleBone

$90

The BeagleBone from Texas Instruments is the lowest-
cost model in the company's BeagleBoard line of proto-
type boards.
It has a powerful processor, an Ethernet port built into

5
 From: http://www.techhive.com/article/257343/noteworthy_alternatives_to_arduino.html

http://www.techhive.com/article/257343/noteworthy_alternatives_to_arduino.html

36 of 68

the board, and a MicroSD card slot.

Teensy/Teensy++

$20-$30

The Teensy and the Teensy++ are ultrasmall boards.
The Teensy comes with 25 I/O pins and the Teensy++
has an impressive 46 I/O pins, enabling either one to
support a wide range of peripherals. each also has an
on-board USB port, to simplify the task of uploading
programs.

Pinguino

$35

Since the Pinguino is the same shape and size as the
Arduino Uno, it can use the shields available for Ar-
duino boards. Unfortunately, this does not guarantee
that they will work--and the Arduino development team
do not support the Pinguino.
A positive point is that it includes an onboard lithium-
ion battery charger.

MSP430
Launchpad

$5

The MSP430 Launchpad, an inexpensive microcontrol-
ler from Texas Instruments, emphasizes expandability
and ease of use.
This board does currently not support Xbee.

For a WSN for a single use-case (no series production), the Arduino-Uno, or as an alternative

the Pinguino, could be used. Since, it is not sure of the Pinguino supports the Xbees, the Ar-

duino has been chosen for prototyping.

Figure 21: MCU

Once the prototyping is realized, the single microcontroller chip can be used standalone. Fig-

ure 21 shows the basic circuit needed, which consists of some resistors, a capacitor and a 16

MHz crystal. It is a bare-bones system, but once built and programmed, it provides all the

functionality of an Arduino.

3.3 Measurement

With this test system for FootballNote a player’s exercises can be monitored. The measure-
ment consists of the intermediate times realized at points in a slalom followed by measuring
the shooting power. The player can see his results on a screen. All data are stored in a data-
base in the Cloud, where the FootballNote application can fetch the data. The process is de-
scribed table 11. The BPM (Business Process Model) is given in figure 22, and gives an over-
view of the tasks for each component, split into the task of the player, the sensor nodes, and
the FootballNote Graphical User Interface.

37 of 68

Table 11: Main actions of the measurement

Step Action

1 Select a player.

3 Start running (Player).

4 Measure time at slalom pole 0.

5 Measure time at slalom pole 1.

6 Measure time at slalom pole 2.

7 Measure time at slalom pole 3.

8 Measure time at slalom pole 4.

9 Measure speed of ball.

10 Display result of single player.

11 Send values into the database.

Figure 22: Business Process Model

3.4 Hardware design

Let us first consider the hardware design and configuration.

As shown in figure 22, movements must be sensed at five places. After the slalom, the shoot-
ing power is recorded. To measure the exact timing between the sensoring moments (one to
five) a motion sensor is used. At the end of the slalom the shooting power is measured. This
can be realized using a radar sensor. This measurement system needs a lot of synchroniza-
tion, with a common clock. The clock in the coordinator (Arduino-ADK) will be used as syn-
chronizer, and will handle the timing. The Coordinator is connected to a mobile device. As the
application is being used in an open field, an Android mobile is used for connection to the in-
ternet through 3G. A Graphical User Interface –showing the results- is provided on a mobile
device. The data are saved in the Cloud (and in the future embedded within FootballNote).

38 of 68

3.4.1 Motion sensor

In order to sense the motion a Passive Infrared sensor can be used.

Figure 23: Parallax PIR sensor

A PIR (Passive Infra-Red) Sensor (figure 23) is a pyro-electric device that detects motion by
measuring changes in the infrared (heat) levels emitted by surrounding objects. When motion
is detected the PIR Sensor outputs a high signal on its output pin (figure 23). The PIR sensor
can detect a person up to ~10 meters away, in the reduced sensitivity mode. The principle of
motion sensing is shown in figure 23. When a warm body (like that of a human or an animal)
passes by, the output signal will change. The Arduino detects the change in pulse height.

3.4.2 Speed sensor

An X-Band Motion Detector (see figure 24) can measure the speed of motion.

An X-Band Motion Detector operates in the X-band
frequency, at 10,525 GHz and indicates detected
movements with oscillations in its high/low output.

The X-Band Motion Detector's sensor is a common
ingredient in security systems and automatic door
openers, and can detect movements in a room, yard,
or even on the other side of a wall. Sensitivity is manu-
ally adjustable with a potentiometer, offering direct line
of sight detection from roughly nine meters. The X-
Band motion sensor also detects the speed of the mo-
tion.

Figure 24: Parallax X-Band motion detector

39 of 68

3.5 Software protocols

In order to synchronize the clock between the sensor node and the base node a synchroniza-
tion protocol is required (Paragraph 3.5.1).

Sending information from the Sensor Node and the Base node can be realized using a Serial
Communication Protocol; however the protocol should be adapted for the described problem
(Paragraph 3.5.2).

3.5.1 Clock synchronization.

The system does not have a common clock. Therefore, a timing protocol is required. Based on
the literature, a solution can be found in implementing the TPSN (paragraph 2.5) for star net-
works.

3.5.2 Protocol

Sending information in the network can be realized using a Simple Serial Communication Pro-
tocol Based on the Wireless Sensor Network”, Liu [9]. This protocol needs to be adapted for
the given situation. The sensor node needs to send the timing information to the Android de-
vice. For this, a special message code must be created, like:

1-byte
Header
H

2-byte
Type
Low byte

2-byte
Time
Low byte

3-byte
Time
High byte

Checksum

The type field is given the type of data.

 A to E : Means motion detected at sensor (pole) 0 to 5.

 S: Speed of motion

 Time speed (byte 2 and 3)
The time will be send in milliseconds and is defined as integer. Since an integer is big-

ger than one byte, it is split up into 2 bytes.

 Checksum

The Arduino is using the Arduino IDE, which makes use of the data type “signed byte” for
streaming. The data type available in the programming language Processing (for the GUI) only
supports the data type “unsigned byte”. Therefore, a conversion is required.

40 of 68

3.6 Summary

For the proof of concept a test system for FootballNote is designed. Each individual sensor
sends a signal to the coordinator when motion occurs. The coordinator handles the timing, and
saves the time of arrival of a signal. The coordinator sends the times to an attached Android
mobile device. An application runs on the mobile device, displaying the results, and posting
them to the Cloud using PHP.

The complete test system for the FootballNote application consist of:

End devices
Motion sensors and Speed sensor networks act as end-devices, they are standalone sensing
systems, which send their outcome through an Xbee radio to the coordinator. Xbee radios are
attached to an Arduino. A motion sensor is connected to the analogue input of the Arduino.

Coordinator Unit
An Arduino-ADK needs an Xbee radio which is configured as coordinator for synchronizing
and timing. The Arduino-ADK is physically connected (using a USB cable) to an Android de-
vice.

User interface
An Android tablet or smart phone is used showing the collected data on the movement and
speed of players, and sending the values to the Cloud.

Protocol for communication
The communication protocol between the end devices and the Arduino-ADK have been de-

fined as well the protocol between the Arduino-ADK and the Android device (graphical user

interface).

41 of 68

4 Implementation

In this chapter, the implementation of the prototype for measuring the performance of a football
player is given.

Paragraph 4.1: Motion sensors.
Paragraph 4.2: Speed sensor.
Paragraph 4.3: Base station.
Paragraph 4.4: Tests.

4.1 Motion sensor

The design was simplified, because of the long time required to fully implemented the TPSN
synchronization protocol. The task sends a signal to the Arduino-ADK (the coordinator) when
motion is detected, the implementation is explained in table 12.

Table 12: Motion sensor - implementation

Task Send a signal to the Arduino-ADK (the coordinator) when a motion is detected.

Hardware
configuration

Arduino Uno; Xbee shield; Xbee; 1 LEDs; 1 transistors (22Ohm); PIR sensor from
Parallax

6

Code The end devices detect motion. The sensor is connected to an input pin on the Ar-
duino. The function: digitalRead, reads the value from a specified digital pin,
either HIGH or LOW.
When a motion is detected a signal will be sent to the coordinator like this:

…
 val = digitalRead(inputPin); // read input value
 if (val == HIGH) { // check if the input is HIGH
 // Motion detected!
 Serial.print('A'); // send a header character
…

When the coordinator receives an ‘A’, the coordinator knows that motion happened at
place 1. When the coordinator receives a ‘B’ comes from place 2, etc.

Electronic
circuit

6
 The sensor can be ordered at: http://www.parallax.com/tabid/768/ProductID/83/Default.aspx

http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://www.parallax.com/tabid/768/ProductID/83/Default.aspx

42 of 68

4.2 Speed sensor

The speed sensor will sense the speed of the ball and send the time to the coordinator; the
implementation is explained in table 13.

Table 13: Speed sensor - implementation

Task Sensing the speed of motion; Sending data (motion speed) to the Arduino-ADK
(the coordinator).

Hardware
configuration

Arduino Uno; Xbee shield; Xbee;1 LEDs; 1 transistors (22Ohm)
XBand motion sensor from Parallax

7

Code This end device measures the acceleration of an object, in this particular case:
shooting power. The sensor is described in paragraph 1.8.2. In this case, the
data on the measured speed must be sent to the coordinator as well.

 Serial.print('S'); // Send message
 Serial.write(lowByte(endcount)); //speed lowpart
 Serial.write(highByte(endcount)); //speed highpart

Electronic
circuit

7
 The sensor can be ordered at: http://www.parallax.com/StoreSearchResults/tabid/768/txtSearch/X-

band/List/0/SortField/4/ProductID/606/Default.aspx

http://www.parallax.com/StoreSearchResults/tabid/768/txtSearch/X-band/List/0/SortField/4/ProductID/606/Default.aspx
http://www.parallax.com/StoreSearchResults/tabid/768/txtSearch/X-band/List/0/SortField/4/ProductID/606/Default.aspx

43 of 68

4.3 Base node

The base node has the task of synchronization of the sensor data and sending it to the mobile
device. The implementation is explained in table 14.

Table 14: Base node - implementation

Task -Receive signals when a motion occurs in Arduino 1 to 4.
-Receive data on the speed of motion from Arduino 5.
-Timing
-Send the values to the mobile device.

Hardware
configuration

Arduino-ADK; Xbee shield;Xbee;5 LEDs;5 transistors (22 Ohm)

Code The coordinator must keep track of the time when a signal arrives. The time library
creates the possibility to keep track of time. The Arduino-ADK uses a quartz crystal for
timing, but does not have a battery to remember the time when power is switched off.
The function which must be used is, called: millis(). The function returns the number of
milliseconds from the moment the program has started. Code 18 shows a part of the
code concerning the timing.

int startTime =0;
Int t0=-1; //starting timer
Int t1=-1; //time place 1
Int t2=-1; //time place 2
Int t2=-1; //time place 3
byte incomingByte = 0;

void loop() {
 // make sure everything we need is in the buffer
 if (Serial.available() >= 2) {
 incomingByte = Serial1.read();
 // look for the start byte
…
 if (incomingByte == ‘B’) {
 startTime = millis();
 t1=millis() - startTime;

 // Sending the time that motion happened in place B (t1)
 acc.print('H'); // send a header character
 acc.print('B'); // send a header character
 acc.write(lowByte(t1)); // send the low byte
 acc.write(highByte(t1)); // send the high byte

 }

Electronic
circuit

44 of 68

4.4 GUI

The code for the Graphical User Interface is written in Processing. The reason for choosing the
programming language Processing is that it is fully integrated within Arduino. The implementa-
tion is explained in table 15. The programming language Processing is explained in Appendix
C.

Table 15: GUI - implementation

Task Connect the Arduino-ADK with the mobile device.
Run a Graphical User Interface with the player’s results.

Code A mobile Android device is attached to the Arduino-ADK board. It will
show the results of the players, and send the values to the Cloud. Part
of the code [5] is outlined.
void receiving()
{
 // read the header and two binary *(16 bit) integers:
 if (myPort.available() >= 4) // If at least 5 bytes are available,
 {
 if(myPort.read() == “H”) // is this the header
 if(myPort.read() == “A”) // is this the header
 {
 value1 = myPort.read(); // read the least significant byte
 value1 = myPort.read() * 256 + value1; // add the most significant byte
 t0 = value1;
 }
 if(myPort.read() == “A”) // is this the header
 {
 value1 = myPort.read(); // read the least significant byte
 value1 = myPort.read() * 256 + value1; // add the most significant byte
 t1 = value1;
 }
 …
 }
}

Interface

4.5 Tests

For the proof of concept a test system for FootballNote is implemented; the results can be

found in the next paragraphs.

45 of 68

4.5.1 Testing the Xbee network

The Xbee is going into sleep mode during the measurements. The documentation on the Xbee
describes the possibility to use the Xbee in a non-sleeping mode. During measurement, I con-
clude that this mode does not work as it should. To solve this problem, I have found, the ‘Hi-
bernate’ mode can be used, and by connecting the input pin (for hibernate) with the ground
using a wire.

There are different types of Xbee radios Series 2, the standard version and a pro version. The
tested FootballNote system uses the Xbee Series 2 Pro. The power consumption was signifi-
cant higher than that of the standard version. When testing with the standard Xbee Series 2
the power consumption is still too high. A solution can be found in:

 Sensors are to be used in cycles of sleeping and waking.

 Coordinator sends a broadcast to the sensors to wake them up.

 During the whole measurement period the sensors are kept awake.

 After the measurement, the coordinator sends a broadcast to the sensors. Sensors are
going back into cycles of sleeping and waking.

4.5.2 Testing the Motion sensor

The motion sensors (PIR sensors) work fine and accurately enough for this type of use-case.
However, starting up the sensor takes approximately 5-10 seconds before the sensor is ready.
This is due to the setup function of the sensor itself. In order to use the motion sensor, the
magnifying glass, is partly taken away, to make it sense in a line (and not in an angle).

4.5.3 Testing the speed sensor

The X-Band Motion Detector is used for speed sensing, however it only works up to 10 kilome-
ters per hour. The shooting power of a ball is at least 100 kilometers per hour. Therefore, more
dedicated hardware must be developed. Details concerning the development of a better sen-
sor can be found in appendix D.

4.5.4 Testing the synchronization of the exercise

The system is tested on the football field with professional football players. The system per-
forms as expected, except for the speed sensor. The measurement time of a player doing a
slalom was maximally 4 seconds. The coordinator is able to measure the time between the
motions, however not accurately enough, because of the time delay in the network. In order to
increase the accurately, the TPSN protocol had to be implemented.

4.5.5 Testing the battery consumption

The power consumption is too high, the reason for this is the ineffective way the Xbees are
programmed. In the final product a rechargeable battery will be applied.

4.6 Conclusion

The results shows that the prototype works only partly for the football. The speed sensor need
to be redesigned. The Xbees had to be programmed in such a way, that they are only in com-
munication mode during a measurement, this will bring down the battery consumption. In order
to increase the accurately of the timing, the TPSN protocol had to be implemented.

46 of 68

5 Conclusions

How to develop a low-cost, reusable, and easy-to-use wireless sensing network ?

The proof of concepts shows a system for standardizing WSN, demonstrating the possibility to
build a case specific, low-cost and reusable wireless sensing network for the Sport.

In principle the prototype, the development of a system for monitoring an individual football
player, could be used for other sport-activities, when using the same concept of measurement.

What is the best architecture to meet the requirements?

The following network is used successfully to realize an application independent wireless
sensing network, which is a combination of Xbee radios, USB, and 3G/Wi-Fi.

The system uses a mobile device running the Android Operating System. As an alternative,
Bluetooth could be considered, which makes the system compatible with other operating sys-
tems, since most of the systems have Bluetooth embedded.

However, this has a consequence for the key requirement “plug-and-play”-mechanism, since

this requires some initialization on the mobile device.

Wireless USB could in future be considered as a possible standard. Wireless USB perfor-
mance is 480Mbps at 3 meters and up to 110Mbps at 10 meters.

47 of 68

How to design a common protocol for sending sensor data?

The standardization is realized using a protocol for sending and receiving data. The coordina-

tor uses a list of sensors, and can easily be adapted with more and different types of sensors;

this makes the system extendable. The system is created for football, but should be easily

adaptable for other sports. This means that the developed system is applicable for application

independent measurements. Furthermore, the same system can be adapted for industry, since

it is not unique for sports.

Does the prototype meets the key-requirements?

In table 16 the key-requirements are discussed.

Table 16: Key requirements in the proof of concept

 Key requirements Proof of concept

1 Reusable for above specified
type of use-cases.

The proof of concept works partly for the described problem.

However, in order to make it applicable for industry further re-
search needs to be done.
As a part of the research for Dispena, the system is extended with
some other basic sensors. This forms the start of a prototype for a
shoe manufacturer

8
.

2 Save data over the Internet The data could be saved on the internet. However, no further re-
search is done on the method of posting the data into a database.

3 Use one or more sensors,
wirelessly, in a sequence.

During measurements, it should be noted, that the measurement
could fail, when one sensor is not reacting in the sequence. In
order to avoid this, the system should check if all sensors are ac-
tive before the measurements start.

4 Coordinate and synchronize
sensors.

The time delay of the system is not taken into account.
In order to use this system the clock synchronization method for
star-structure wireless sensor network could be used for this. This
system is described in paragraph 2.6.

5 Contains a Graphical User
Interface

The concept makes use of a Graphical User Interface running on
an Android mobile device. The system will only work with an An-
droid device; in order to make it available for other mobile devices,
Bluetooth can be considered.

6 Use Plug and Play, with easy
setup.

The prototype works as expected, as plug and play. Since, once
connecting the mobile to the base node, the application is auto-
matically launched on the mobile. For this no further software is
needed.

8
 An explanation of this shoe factory use case can be found here: http://youtu.be/2JDM3w0sHIA

http://youtu.be/2JDM3w0sHIA

48 of 68

When the Arduino-Adk is connected to the mobile device, it cannot
be recharged, since it makes use of the same USB port.

7 Easy to maintain. When the prototype comes into production, the battery place
should be reconsidered. In the prototype the battery is inside the
box, which is not handy when the battery should be replaced.

8 Low cost. The system is low-cost.
Price reduction can be realized by using the single chip, instead of
the Arduino-Uno board. See paragraph 3.2.

9 Use existing hardware The prototype makes use of existing hardware.
However, for specific measurements (like measuring the speed of
a football) the existing hardware fails. For this dedicated hardware
needs to be developed (see Appendix D).

 Energy consumption The prototype is ineffective as far as energy consumption is con-
cerned. Since the Xbee radios are continuously in the active mode,
even when there is no active measurement.
A solution can be found in setting the radio’s only in active mode,
during a measurement.
Because of the high energy consumption, the Pinguino board
could be considered as an alternative of using the Arduino-Uno
board, since it has a lithium-ion battery charger onboard. See par-
agraph 3.2

Further developments

This research has led to a collaboration with Dispena for further developed, and to realize ap-

plication independent solutions for WSN.

After the research, Dispena was able:

 to estimate the needed investment to design and build own sensors.

 to offer an affordable proof of concept to potential customers to implement a measuring

process.

 to build a new software to automatically configure the sensors for any kind of measur-

ing process, especially in the manufacturing industry.

The lessons learned from the first prototype resulted in a use case independent design for
Dispena, and have led to further development, which will be described in chapter 6.

49 of 68

6 Recommendations

Based on this research, Dispena would like to realize this system as a commercial product.
Based on this research, some next step and further suggestions are described hereafter. The
further development is not part of this research, and are therefore only recommendation for
further analysis and research are given.

Network

The system uses a Graphical User Interface running on a mobile device running Android. More
openness and standardization could be realized if the Graphical User Interface would be plat-
form independent. Possible platform independency is described in table 17.

Table 17: Platform independency

Platform Possible solution

Mobile device running Android OS USB

Bluetooth

Mobile device running iOS Bluetooth

Mobile device running Windows 8 USB, Bluetooth not supported yet

Standalone PC running Windows 7 USB, Bluetooth

Standalone computer running macOS USB, Bluetooth

Standalone computer running Linux USB, Bluetooth

The connection between Arduino-ADK and the mobile device is currently realized using the
Arduino-Adk board as an accessory. However, not all Android devices support this mode. It is
usually not clearly described whether a mobile device supports this connection. Alternatively, it
is be possible to directly implement it as a micro-bridge9.

The football application uses a very small protocol for sending a stream of data. Based on “A
Design of Simple Serial Communication Protocol Based on the Wireless Sensor Network” [17],
the protocol had to be extended.

9 See: http://code.google.com/p/microbridge/

50 of 68

New Protocol

In order to make it extendable, the sensors should be selectable. Currently the prototype
works with one type of exercise. The next step is, to choose an exercise and sensors, a possi-
ble new protocol is described in table 18.

Table 18: New protocol

 Header: start of the data stream

 Sensor type (byte 2 and 3): a unique sensor type name

 Sensor id: a unique number

 Data bytes 1 to 4: the sensor data

 End byte: giving the end of the data stream;

XML

In order to store the data in an efficient way, further research could be done on streaming the

data in XML format. An example of this is given in table 19, where the temperature is written in

an XML file.

Table 19: XML output example

 <data-sensor>
 <type name="TE" idd="1"/> //name of the sensor + idd (combination is unique)
 <sequence number="1"> //sequence measurement number
 <data value="25.0"/>
 <time hour="16" minutes="30" seconds="38" milliseconds=""/> //or using a timestamp
 </data-sensor>

Data-Synchronization

A protocol for Clock-Synchronization for Star-Structure Wireless Sensor Network should be
implemented for timing; therefore, the protocol described in Chapter 1 could be used (Timing-
sync Protocol for Sensor Networks (TPSN)).

51 of 68

7 Bibliografie

[1] S. K. Dash, "A Survey on Applications of Wireless Sensor Network Using Cloud
Computing," International Journal of Computer Science & Emerging Technologies (E-
ISSN: 2044-6004), Volume 1, Issue 4, December 2010.

[2] W. Jiang, Introduction and overview of Wireless Sensor Networks. IGI Global, 2010.

[3] E. Ayars, "Using Xbee transducers for wireless data collection," Apparatus and
Demonstration Notes, vol. July 2010, no. Am. J. Phys., Vol. 78, No. 7, 19 april 1010.

[4] N.S.A. Zulkifli, "XBee Wireless Sensor Networks for Heart Rate Monitoring in Sport
Training".

[5] M. Bohmer, Beginning Android ADK with Arduino. Germany: Apress, 2012.

[6] G. Brandt, "Efficient data collectoin using Android ADK in a high velocity, mobile
environment," May 1, 2012.

[7] B. Kaufmann, "Computing, Design and Implementation of a Toolkit for the Rapid
Prototyping of Mobile Ubiquitous," August 2010.

[8] A. Allan, Ios Sensor Apps With Arduino, Wiring The Iphone And Ipad Into The Internet Of
Things. USA: O'Reilly, september 2011.

[9] X. S. Ya Liu, "Symposium on Electrical & Electronics Engineering," in A Design of Simple
Serial Communication Protocol Based on the, China, 2012.

[10] M. Weldin, Arduino Cookbook. USA: O'Reilly, december 2011.

[11] H. Timmis, Practical Arduino Engineering. Apress, november 2011.

[12] J. Sarik, "Arduino prototyping platform," in Lab kits using the Arduino prototyping platform,
Washington, Oct. 2010, pp. T3C-1 -T3C-5.

[13] M. Rijnbout, "SmartGoals: a Hybrid Human-Agent Soccer Training System," 2009.

[14] B Perumal, "WSN INTEGRATED CLOUD FOR AUTOMATED TELEMEDICINE (ATM)
BASED e-HEALTHCARE," in IPCBEE vol.29 (2012), Singapore, 2012, p. vol29.

[15] S. Monk, 30 Arduino Projects for the Evil Genius. Europe: McGraw-Hill Education,
september 2010.

[16] M. Margolis, Robot, Make an Arduino-controlled. USA: O'Reilly Media, november 2012.

[17] S. Mada, "An Adaptive embedded system for helping patients," International Journal of
Computer Trends and Technology, p. volume2Issue2, 2011.

[18] T. Igoe, Making Things Talk. Canada: Dale Dougherty, O'Reilly, 2007.

52 of 68

[19] R. Faludi, Building Wireless Sensor Networks. USA: O'Reilly Media, januari 2011.

[20] C. Doukas, Building Internet of Things with the Arduino. Createspace, april 2012.

[21] M. Dijusto, Environmental Monitoring with Arduino. USA: O'Reilly Media, februari 2012.

[22] M. Banzi, Getting Started with Arduino. USA: O'Reilly Media, oktober 2011.

[23] D. Cox, "Time Synchronization for ZigBee Networks," ZMD America, Inc., no. IEEE, 2005.

[24] R. Fry, Processing. A Programming Handbook for Visual Designers and Artist. United
States of America: Massachusetts Institute of Technoogy, 2007.

53 of 68

Appendix A: Use case examples

Application 1: Dispena Soccer (FootballNote)

More and more, athletics Skills of players are becoming a relevant success factor in modern
football. Football note has several exercises to teach athletic skills to young players. The vid-
eo10 shows how athletics skills can be measured in a laboratory. One of the most famous play-
ers, Christiano Ronaldo, has been used for this experiment.

Possible Use Cases:

Use case 1 - Measure the velocity of a player over a straight distance of 50 meters. It should
include intermediate measurements after 5m, 15m, 25m, 40 meters. The unit of measure is
meters per seconds.

Use Case 2 - Measure the velocity of a player on a slalom over a distance of 30 meters. It
should include intermediate measurements after each bend in the slalom, as a measurement
point. The unit of measure is meters per seconds (figure 25).

Figure 25: Use Case 2

10 http://www.youtube.com/watch?v=VpMhf5XWNEw

http://www.youtube.com/watch?v=VpMhf5XWNEw

54 of 68

Use Case 3 - Measure the jumping force (Newton) and jumping height (m) of a player (figure
26)

Figure 26: Use Case 3

Training Case 4 - Endurance of a player. Measure the heart rate while the player is running a
circuit of 150m (6 times). The circuit is a quadrant with four measurements point. At every
measurement point, the time and heart rate should be recorded (figure 27).

Figure 27: Use Case 4

Training Case 5 - Measure the movements of a player. Based on the similar approach of a
Nike Sensor (see: http://www.youtube.com/watch?v=CcMDyPyHMUc), it should be possible
to measure the step frequency, actual position in a quadrant and the distance run using the
Arduino. (figure 28)

http://www.youtube.com/watch?v=CcMDyPyHMUc

55 of 68

Figure 28: Use Case 5

Training Case 6 - Shooting Power. – With an HF Sensor11, it should be possible to measure
the shooting power of a player. It would be enough to save the speed through Arduino in an
Oracle Database, and also recording the time of shoot.

Figure 29: Use Case 6

11 http://www.sportco.de/teamsport/fussball/trainingshilfen/10477/speed-radar-control?c=186751

And test: http://www.youtube.com/watch?v=qcxriNLAx10&feature=related.

http://www.sportco.de/teamsport/fussball/trainingshilfen/10477/speed-radar-control?c=186751
http://www.youtube.com/watch?v=qcxriNLAx10&feature=related

56 of 68

Application 2: Dispena agile

Use Case 7 – Logistic - GPS (before reaching the store). Firstly an object will be recognized
by an RFID label. After recognizing the following properties of the object will be measured:
temperature, weight, size, humidity.

Figure 30: Use Case 7

Use case 8 - Manufacturing (Quality Insurance)

The manufacturing experiment should be done with a more robust sensor, which is able to
measure in more difficult environments and for e.g. air pollution, identifying a fracture, etc.

57 of 68

Summary of initial project meetings

Figure 31: Mindmap

58 of 68

Appendix B: Arduino

An Arduino is a small microcontroller board. There are many different Arduino boards; the main
differences between them are costs, type of processor, processor speed, number of in-
put/output ports, etc. The standard Arduino is called the Arduino Uno. This project uses the
Arduino Uno.

The Arduino Uno (figure 32) is a small microcontroller board based on the ATmega328 micro-
processor. This means:

It has 14 digital input/output pins. Another Six pins can be
used for Pulse-With-Modulation (PWM), e.g. necessary
for controlling an DC-motor. The Arduino Uno is also fitted
with a 16 MHz crystal oscillator that is used for timing
(more specifically: giving the µC its clock signal).

 A USB plug is needed to connect the Arduino to the
computer. There are three ways to power this board, with
a USB connection (from the computer or other USB
source), using a battery or using a normal external power
supply.

 Figure 32: Arduino

The Arduino IDE (figure 33), which is a development envi-
ronment and compiler, is used for creating the programs
and can be used for different Arduino types.

Programs for the Arduino are called sketches. The sketches
are programmed in a special developed embedded C vari-
ant.

The sketches can be uploaded to the Arduino board, when
connected to the PC using a USB cable.

The block diagram of the Arduino (see figure 34) demon-
strates the architecture of the board.

Figure 33: Arduino IDE

The heart of the device is the Central Processing Unit (CPU). It fetches program instructions
stored in the Flash memory and executes those. The Arduino has a small working memory
(32kb). An EEPROM (non-volatile storage) is used for some basic functionality (in order to turn
the board on and off, etc.). The card also had some input / output for communication and sens-
ing or controlling external electronics devices connected to the ports.

59 of 68

Figure 34: Diagram of the Arduino

All Arduino boards have at least one serial port (also known
as a UART or USART): Serial (see figure 35). It communi-
cates on digital pins 0 (RX [receiving]) and 1 (TX [transmit-
ting]) as well as with the computer via USB, by using a
special onboard communication chip. The Arduino IDE
provides a serial monitor (Figure) to display serial data re-
ceived by the Arduino, when the Arduino is connected to a
PC using this Serial interface.

Figure 35: Serial monitor

60 of 68

Sensing temperature sensor with an Arduino

Suppose one would like to read a temperature value. In this case, the temperature sensor
must be connected to the Analogue input. A well-known temperature sensor is the TMP36,
which must be connected to an Analogue input pin on the Arduino.

TMP36: Temperature sensor.
This analog temperature sensor is a chip, that exactly tells the
ambient temperature.
In case the sensor is connected to 5V, the following formula
can be used to convert the 10-bit analog reading into a tem-
perature:
Voltage in milliVolts = (reading from ADC) * (5000/1024)
This formula converts the number 0-1023 from the ADC
into 0 - 5,000 mV.
Then, to convert millivolts into temperature:
Temperature = (Voltage in milliVolts – 500) / 10 oC

Steps to be undertaken for sensing temperature on the computer:

1. Build the electronic circuit.

2. Connect the Arduino using a USB cable to the computer.

3. Create a sketch (code 1).

4. Upload the sketch to the Arduino.

5. Open a serial monitor for watching the values.

Figure 36: Temperature sensor with the Arduino

61 of 68

The Arduino sketch is straightforward, explanation of the code is given in the next table.

 int sensorPin = 0;
 void setup() // this function runs once when you turn your Arduino on
 {
 Serial.begin(9600); //Start the serial connection with the computer
 }

 float readTemperature() // reads the temperature in C
 {
 //getting the voltage reading from the temperature sensor
 int reading = analogRead(sensorPin);

 // converting that reading to voltage, for 3.3v Arduino use 3.3
 float voltage = reading * 5.0;
 voltage /= 1024.0;

 // print out the voltage
 Serial.print(voltage); Serial.println(" volts");

 //converting from 10 mv per degree with 500 mV offset
 float temperatureC = (voltage - 0.5) * 100 ;
 return temperatureC;
 }

 void loop() // run over and over again
 {
 float temperatureC = readTemperature();
 int integerPart = (int) temperatureC;
 int fractionPart = (int) (temperatureC – integerPart) * 10);

 // print the temperature
 Serial.print (integerPart); Serial.print(“.”); Serial.print (fractionPart); Serial.println ("

o
C");

 delay(1000); //waiting a second
 }

When opening the Serial monitor. The temperature will be printed out every second, e.g. like:

20.5
o
C

20.5
o
C

20.8
o
C

…

62 of 68

Serial interface of the Arduino

The Arduino uses a Serial interface, based on Asynchronous Serial Communication. It is the
standard for communication between the Arduino board and a computer or other devices
(Fout! Verwijzingsbron niet gevonden.). When using the Serial pins, either the pins of the
Arduino board (RX / TX pins) are connected to another device, or a USB cable is plugged in.

In this sensor example the Arduino is connected to a personal computer through a USB port.
This involves the Universal Serial Bus protocol.

RX/TX: it involves receiving and sending data through the so called TTL12 protocol, and is of-
ten used when an additional boards (called: shield) is attached to the Arduino. It means that
the RX (RX is the abbreviation of receiver) from the sender should be connected to the TX (TX
is the abbreviation of transaction) of the receiver, and the other way around (figure 37).

Figure 37: Asynchrony Serial Communication

These two connection types involve the use of another data protocol. Table 20 gives an over-
view of the meaning of these protocols in the OSI (Open Systems Interconnection) lay-
ers.

12

 TTL, or in order words: transistor-transistor logic (TTL) voltage levels have been 5.0 Volt, with a high being any

voltage above about 3.5 Volt and a low being any voltage below about 1.5 Volt.

63 of 68

Table 20: TTL and USB protocol

Layer TTL USB protocol

Physical layer Receiving and sending data over
pin 0 and 1.

Sending data over two data lines
(2 and 3).
Line 2 carries the signal data on
negative Voltage. And on line 3 as
positive Voltage. Together it always
adds up to zero (checksum).

Electrical layer 0 / 5 Volt -5 / 0 / +5 Volt

Logical layer 5 volt signal = value 1
0 volt signal = value 0

-5 (line2) and – 5 (line3) = value 1
0 volt signal = value 0

Data layer Data is sent at 9,600 bits per se-
cond.

Data could be sent up to 480 meg-
abits. The maximum the Arduino
can handle is: 115,200 bits per
second.

These two protocols are adapted in the Serial Interface library from the Arduino (see Appendix
B).

Of course, other protocols exist for Wireless and Wired Communication techniques. Table 21
shows the different technologies, including their data communication rate and the operation
range.

64 of 68

Table 21: Serial Communication

Command Description

 begin() Sets the data rate in bits per second (baud) for serial data

transmission.

Depending on the communication module, the following rates can

be used: 300, 1,200, 2,400, 4,800, 9,600, 14,400, 19,200, 28,800,

38,400, 57,600, or 115,200 bits per second.

 end() Disables serial communication, allowing the RX and TX pins to be

used for general input and output.

 available() Get the number of bytes (characters) available for reading from

the serial port.

 read() Reads incoming serial data.

 peek() Returns the next byte (character) of incoming serial data without

removing it from the internal serial buffer.

 flush() Waits for the transmission of outgoing serial data to complete.

 print() Prints data to the serial port as human-readable ASCII text.

 println() Prints data to the serial port as human-readable ASCII text

followed by a carriage return character (ASCII 13, or '\r') and a

newline character (ASCII 10, or '\n'

 write() Writes binary data to the serial port. This data is sent as a byte or

series of bytes.

 SerialEvent() Called when data is available. Use Serial.read() to capture this

data.

65 of 68

Appendix C: Processing

Processing (Figure 38) is an open source programming language and environment for people
who want to create images, animations, and hardware interactions. It is specially designed for
smooth communication with the Arduino. The code itself is similar to the Arduino sketches, but
the language is more extendable as will be explained next.

Since it is possible to compile and/or
export the code as: Android, Win-
dows, Linux, Mac application, it is
platform independent. It is a great
advantage to have the same pro-
gramming and Graphical User Inter-
face running on different devices.

Both programs (Arduino IDE and
Processing IDE) use the startup()
function to perform initialization pro-
cedures. Processing uses the draw()
function for continuous output, while
in Arduino the loop() is used.

The Processing language uses al-
most the same library for Serial
communication.

Figure 38: Processing

The strongest point of using the Processing language of the Graphical User Interface is that it
can run on different devices (see table 2).

Table 22: Support of the Processing language

Support Android
Mobile

iPhone iMAC Linux PC JavaScript Java
Applet

Processing

Processing connected
with an Arduino-ADK
board

66 of 68

Appendix D: Development of a new shooting-power sensor

The X-band sensor is basically a radar detector.

How it works

The sensor transmits a high frequency radio wave
and the reflection of the moving object is received.

If the object moves, the received frequency will be
different from the send frequency because of the
Doppler effect.

The Doppler effect will change the frequency of the
reflected wave.

The relative changes in frequency can be explained as follows: When the source of the waves
is moving toward the observer, each successive wave crest is emitted from a position closer to
the observer than the previous wave. Therefore, each wave takes slightly less time to reach
the observer than the previous wave. Therefore, the time between the arrival of successive
wave crests at the observer is reduced, causing an increase in the frequency.

The frequency of the returned wave will be 𝑓 = (1 + 2

) 𝑓 , where v is the speed of the ob-

ject (the ball) perpendicular to the emitted wave, c is the speed of light and f0 the original fre-
quency of the transmitted wave.

To detect the frequency change, the received signal is mixed
(multiplied) with the original signal and available on a pin on
the outside of the sensor (IF).
This multiplication of two signals with different frequencies
will lead to two new signals, one with the sum of frequencies
and the other with the differences of the two frequencies.
The Difference signal has a frequency in the audio range
and is:

 𝑓 = (1 + 2

)𝑓 − 𝑓 = 2

 𝑣 ≈ 18.5 𝐻𝑧 𝑘𝑚 ℎ

The Sum signal is of no value. Because of its very high fre-
quency it is (conveniently) lost through stray capacitances.

Unfortunately, the ball will normally not be moving perfectly
perpendicular.
As a result, the resulting frequency of the output signal will
be:

𝑓 =

 𝑣 cos , which means that we will underestimate the

real speed.
We have to make sure that the players shoot from enough
distance and straight on the goal.
Alternatively we can have multiple sensors on different fre-
quencies and use that to calculate the real speed and direc-
tion of the ball.

67 of 68

The electronics in the Parallax module

Readymade modules are intended for motion detection and not for speed measurement. The
electronics are always very similar. For the Parallax sensor it looks like:

The limited bandwidth of the amplifier makes the design simpler in three ways:

1. The small bandwidth limits noise and disturbance, which makes the design of the amplifier

simpler.

2. The sensor is switched at about 2 kHz, this saves battery power. That 2 kHz modulation

needs to be suppressed in the output signal and choosing it much lower than the switching

frequency makes suppression easier.

3. The resulting pulse train is also of low frequency and can be easily handled by a Arduino

microcontroller, motion detection can be done by counting pulses, which is simply to im-

plement and robust.

This schematic layout is optimized for motion detection but unusable for measuring speed.
The sensor output is about 18 Hz km-1.h and with a limit of 70 Hz it means that objects moving
faster than 5 km.h-1 are not detected.

How to change the electronics and software

First of all the sensor need to operate in continues mode. This will avoid the 2 kHz modulation
that needs to be suppressed in the output signal.

The amplifier then needs to be replaced by a low-noise version with a bandwidth of 100 –
2,000 Hz. For speed measurement, we are not interested in low frequency signals, or objects
moving slower than 5 km.h-1, starting from 100 Hz also supresses line voltage interference (at
50 Hz).

The resulting signal is than digitized by a comparator and fed into the microcontroller. Now we
cannot simply count pulses, but we need to measure and process the time difference between
consecutive pulse edges. This can be done using the capture unit on the 16 bit timer in the
ATmega microcontroller. Care must be taken to handle timer overflow and making sure the
Arduino has enough resources to handle all timer interrupts.

With careful amplifier design and software construction it is possible to measure speeds of
more than 5 km.h-1.

68 of 68

