
An Instructional Model to Link Designing and Conceptual
Understanding in Secondary Computer Science Education

Ebrahim Rahimi
Radboud University &

Open University
ebrahim@cs.ru.nl

Erik Barendsen
Radboud University &

Open University
e.barendsen@cs.ru.nl

Ineke Henze
Delft University of Technology
f.a.henze-rietveld@tudelft.nl

ABSTRACT
In design-based education, students use scientific concepts to in-
form their artifact-making endeavors. On the other hand, artifact-
making activities are meant to deepen students’ conceptual under-
standing. However, no strategy has been described that explicitly
links conceptual development and artifact-making endeavors in
computer science design projects in an authentic way. To fill this
gap, in this ’work in progress’ study, we developed an instructional
model for fusion designing and conceptual learning in CS educa-
tion. A key component of the model is the ’intermediate design
products’ which play a critical role in connecting designing and
conceptual learning. The model served to develop exemplary lesson
materials meant to enhance students’ algorithmic thinking. The
materials were implemented and evaluated in four classes. The re-
sults suggest the model provides opportunities to improve students’
algorithmic thinking. Furthermore, intermediate products turn out
to be promising inputs for (formative) assessment of conceptual
development in design projects by capturing and revealing students’
misconceptions about basic CS concepts.

KEYWORDS
Design-based education, Computer science education, learning by
designing, algorithmic thinking, conceptual development
ACM Reference Format:
Ebrahim Rahimi, Erik Barendsen, and Ineke Henze. 2018. An Instructional
Model to Link Designing and Conceptual Understanding in Secondary Com-
puter Science Education. In Proceedings of the 13th Workshop in Primary
and Secondary Computing Education (WiPSCE ’18), October 4–6, 2018, Pots-
dam, Germany. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3265757.3265768

1 INTRODUCTION
Design-based education is a popular instructional approach to teach-
ing Computer Science (CS) in secondary schools. In this approach,
students participate in individual or group projects for developing
various types of digital artifacts including software applications,
websites, games, and videos [2, 12]. There is an increasing tendency
in design-based education toward realistic, ill-structured design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiPSCE ’18, October 4–6, 2018, Potsdam, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6588-8/18/10. . . $15.00
https://doi.org/10.1145/3265757.3265768

problems with ill-defined goals, specifications, states, or operators
[8, 9]. In the context of CS design-based education this tendency is
boosted by professional software design processes characterized by
facing with ill-defined problems; dealing with complex and often
conflicting constraints; and generating large, complex, dynamic,
and intangible artifacts [8, 16].

Computing has been advocated as an engineering as well as
science-oriented discipline [3, 15]. However, most of the instruc-
tional models suggested for CS design projects in secondary educa-
tion mainly address the engineering and development aspects of
computing. In these models, the link between students’ designing
and conceptual development is not explicit and there is no mecha-
nism to facilitate and reveal students’ reasoning about their design
and trace back their design features to their underlying concepts.
To the best of our knowledge, there is no documented instructional
strategy to make students’ learning visible and deepen and assess
their conceptual development in an authentic way (i.e., without
disturbing the design context).

This study is part of an ongoing research project aiming at fa-
cilitating formative assessment of conceptual development in sec-
ondary school CS design projects. In this study, we developed an
instructional model to introduce and use intermediate design prod-
ucts for fusion designing and conceptual learning in CS education.
The model was used to inform the development of course materials
to enhance students’ algorithmic thinking through developing a
digital text analyzer tool.

2 THEORETICAL BACKGROUND
The theory of constructionism forms the theoretical basis for this
research. Learning-by-making forms the core of the construction-
ism theory [10]. From the perspective of this theory, learning is
the conscious process of building knowledge structures through
constructing an artifact whether "a sand castle on the beach or
a theory of the universe" [10] (p. 1). Constructionism states that
learning takes place when learners engage in design challenges to
develop a "public entity" or a personally meaningful artifact and
"audience to share insights with" while working on their designs
[10]. However, some people warn that mere focus on activity-based
learning experiences can lead to a form of "shallow construction-
ism" or building for the sake of doing where students make an
artifact without gaining a deep understanding of its underpinning
concepts [11, 14].

To fusion learning and design and prohibit shallow construction-
ism issues, Kolodner et al. [9] introduced the Learning-By-Design
(LBD) framework. This framework aims to shape an educational
approach to learning science concepts via working on real design

https://doi.org/10.1145/3265757.3265768
https://doi.org/10.1145/3265757.3265768
https://doi.org/10.1145/3265757.3265768

WiPSCE ’18, October 4–6, 2018, Potsdam, Germany Ebrahim Rahimi, Erik Barendsen, and Ineke Henze

challenges in parallel with acquiring cognitive, social, and commu-
nication skills in the context of middle schools [9]. To this end, LBD
defines a process consisting of two interconnected and iterative
"Design & Redesign" and "Investigate & Explore" cycles. This pro-
cess starts with the "Design/Redesign" cycle seeking to understand,
analyze and address the design challenge. When a specific scientific
investigation or knowledge is needed (i.e., the "Need to Know" mo-
ment) the process switches to the "Investigate & Explore" cycle to
test a hypothesis or learn the required concept. Then, the process
returns back to the "Design/Redesign" cycle to apply or test the
acquired findings (i.e. the "Need to Do" moment).

3 THE INSTRUCTIONAL MODEL
We adapted the Learning-By-Design (LBD) framework [9] for de-
veloping an instructional model to link conceptual learning and
designing in the context of secondary CS education, as depicted
in Fig. 1. The model consists of five interconnected components:
Design-oriented objectives, Knowledge-oriented objectives, Making
cycle, Learning cycle and Intermediate design products.

The making cycle is the core component of the model. It is in-
formed by real and meaningful design objectives and its ultimate
goal is to enhance students’ algorithmic thinking through devel-
oping an IT artifact. To support algorithmic thinking, the making
cycle provides four phases of analysis, design, development, and
test [4]. These phases provide a general roadmap for students to
guide and orchestrate their artifact-making activities and address
the development aspect of computing as an engineering and design
discipline [3]. Each phase requires and asks students to gain spe-
cific sorts of knowledge. The specifications of these phases are as
follows:

To accomplish their design assignmentms students might need
to gain specific knowledge and concepts including problem-solving,
basic CS concepts, programming, and evaluation. To this end, they
are encouraged to engage in various knowledge acquisition ac-
tivities including reading content, performing unplugged activi-
ties, generating trace tables, answering questions, presenting and
discussing returns, and completing or debugging a program. The
knowledge acquisition activities might get evokedwithin the phases
of themaking cyclewhenmore knowledge is required to accomplish
the design assignment (the Need to Know moment as mentioned
above). For example, in the test phase, an observed inconsistency
between the program outputs and the design objectives might initi-
ate a series of learning activities to acquire required knowledge to
address this inconsistency. This represents a just-in-time approach
to learning CS concepts which is well aligned to this fact that people
naturally do not learn something just for the sake of learning but to
do something meaningful and relevant with it [10]. This is contrary
to the most traditional approaches to providing CS design-based
education where students first learn CS concepts separately and
then try to apply these concepts in practice. The knowledge acqui-
sition part of the instructional model seeks to facilitate students’
understanding of CS concepts and their implications and address
the science-oriented aspect of computing [1, 15].

The joint outputs of the making and learning cycles are mani-
fested in tangible student-generated intermediate design products,
namely, a conceptual solution (i.e. a high level overview of the design

Figure 1: An instructional model for linking learning and
design in the context of secondary CS education

problem including its inputs, outputs, and purposes; its parts and
their interconnections; and an abstract formulation of an initial
solution for it), an algorithm in terms of a flowchart representing
a language-independent, visual, detailed and step-wise implemen-
tation of the solution, a program, and a test report. These interme-
diate products serve as evidence of students’ learning and design
outcomes resulted from their collaboration around the design chal-
lenge. They are meant to make students’ learning, reasoning and
decisions about design explicit. Since these intermediate products
emerge during and from the design and learning processes, they
seem promising inputs for formative assessment strategies.

4 THE STUDY SETTING
We used the instructional model to develop course materials to
facilitate students’ learning of basic algorithm concepts via extend-
ing a digital text analyzer tool. Then we conducted a research to
investigate the benefits of the instructional model, in particular the
intermediate design products directed by the following questions:

In the participants’ perception, how do the intermediate design
products:

(i) facilitate students’ algorithmic thinking and reasoning about
design?

(ii) are beneficial to students’ understanding of the intended CS
concepts?

The Developed Course Materials
We used the proposed model to generate course materials for de-
veloping a digital text analyzer tool (i.e. the design objective) and
learning basic algorithm concepts (i.e. the knowledge objectives)
by upper secondary school students. The course materials include
two design and content documents. The design document included
two examples and five real assignments. In each assignment stu-
dents were asked to follow the making cycle and generate and
share intermediate design products. To facilitate this process, we
developed a group of sub-algorithms with intuitive names to be

An Instructional Model to Link Designing and Conceptual Understanding WiPSCE ’18, October 4–6, 2018, Potsdam, Germany

used by students to synthesize their algorithms. In the design docu-
ment an iterative approach built upon the completion programming
strategy [17] was taken. The content document covered various
aspects of algorithms including its basic concepts, trace table, and
flowcharts. In addition to these documents, a software tool (for
both PHP and Python programming languages) was developed to
facilitate students’ programming of their algorithms.

Participants
Four CS teachers and 87 students aged 15-16 from 4 secondary
schools in the Netherlands participated in this project which lasted
8 weeks. All of the students had programming experience with
either PHP or Python from their previous CS courses. However,
none of them had prior knowledge and experience about algorithms.

Data Collection
In this in-depth and exploratory study, we opted to use interviews as
the data collectionmethod. The interview questions asked for partic-
ipants’ perceptions about the benefits of the project for enhancing
their algorithmic thinking and their encountered difficulties. Five
group interviews with sixteen students and four interviews with
the teachers were conducted. Further, we collected students’ gen-
erated solutions, flowcharts, and programs as secondary data to
support the analysis.

Data Analysis
We categorized the benefits of the project for enhancing students’
learning of algorithm concepts in four groups, namely, problem
analysis, devising algorithm, program development, and conceptual
understanding adopted from [6]. Within each category, the inter-
view data were analyzed inductively.

5 RESULTS
We present the results according to the above categories. Within
each category, we discuss the themes emerging from the inductive
analysis.

Facilitation of Students’ Algorithmic Thinking
Problem Analysis

Problem decomposition: According to the participants, de-
composing a problem into sub-problems was quite new for them
and they found it very interesting and useful.

Dividing a problem into subproblems and finding their inter-
connections was not an easy and interesting task for some of the
students. Furthermore, some of the students with more program-
ming knowledge and experience preferred to jump quickly to the
programming part.

Splitting the design process: The interviewed students and
teachers found the defined phases, namely, analysis, design, devel-
opment, and test and their associated products a useful strategy to
chunk the whole software development process and get an overall
overview of it.

Analysis of possible inputs: The open, ill-defined and realis-
tic nature of the design assignments faced the participants with

complex challenges and also provided great opportunities for prob-
lem analysis, analysis of possible inputs for the problem, decision
making and reflection.

Formulation of general solution: was perceived beneficial in
translating a vague perception of the problem existing in someone’s
mind into an explicit and communicable picture of the problem and
its components. This picture acts a road map for providing a general
and abstract overview of the problem, its inputs, components and
the required steps to solve it without getting confused by details.

Devising algorithm
Promoting abstract thinking: The model appeared to have

promoted abstract thinking among the students through generating
an abstract solution for their design assignments and using the
provided sub-algorithms.

Triggering thinking ahead: The interviewed students enu-
merated several benefits for using flowcharts including working on
smaller problems, achieving a high level of abstraction, promoting
systematic and logical thinking, forcing students to think ahead,
and giving more structure and organization to the solution and
program.

Resolving group task-division issues: Some teachers found
sub-algorithms as useful means to address task division issues
within groups.

Increasing the traceability and communicability of solu-
tions: Dividing a solution into sub-algorithms was perceived highly
beneficial in making the solution more traceable and communicable
for team members.

Dealing with uncertainty: The student-centric approach of
the project, existing several answers for a problem and lack of
access to correct answers faced students with challenges and at
the same time provided them great opportunities to encounter and
handle several uncertainties in their design decisions.

Despite these positive reactions, the participants encountered
several difficulties including calling sub-algorithms properly in
flowcharts, managing interaction between sub-algorithms and the
main algorithm, and passing parameters. Also, generating flowcharts
using pen and paper was perceived difficult and time-consuming
by some of the interviewees.

Program development
Practicing programming competencies: Most of the groups

completed their assigned assignments and produced working pro-
grams.

Using functions to organize and structure code: Students
were asked to use already implemented sub-algorithms and their
associated functions to implement their solutions and write their
programs. Some of the interviewed students found these functions
beneficial, in particular, for enhancing their abstract thinking, get-
ting rid of writing a large number lines of code, and improving the
quality and readability of their programs. One group even used and
adapted the provided functions to define a new assignment and
build it. On the other hand, several students used built-in functions
of PHP or Python to develop their programs.

Benefits for Students’ Conceptual Development
Making learning more relevant: Most of the interviewees re-
marked that the authentic and contextualized nature of the design

WiPSCE ’18, October 4–6, 2018, Potsdam, Germany Ebrahim Rahimi, Erik Barendsen, and Ineke Henze

assignments promoted a doing-then-learning approach to learning
CS concepts. According to them, this approach served to encour-
age their learning activities via spotting their knowledge gap and
defining more realistic and meaningful purposes for their learning
and making processes.

Shifting from ’did-you-know’ to ’how-to-use’ approach: An-
other perceived benefit of the project concerns with its contribution
in changing the focus of learning from did-you-know to how-to-use.

Making learning visible using flowcharts: The intermediate
design products, in particular, flowcharts were appreciated by most
of the interviewees as useful means to make students’ learning and
misconceptions visible.

Improved learning curve: The completion-based approach fol-
lowed by the instructional model was perceived useful for the
gradual enhancement of students’ learning and design skills.

6 DISCUSSION
The realistic and contextualized aspects of the design assignments
appeared to be highly influential in motivating students’ making
and learning processes. There is the general agreement that con-
ducting realistic projectscan promote deep and effective learning
through situating learning in purposeful and engaging activities,
connecting students to a context outside of the school boundaries
and giving more professional sense to their endeavors rather than
mere educational purposes [5, 9].

The instructional model appears to provide opportunities to
facilitate students’ algorithmic thinking through facing them with
open and complex assignments where their analytical thinking was
triggered to consider possible inputs for the design assignments and
develop a solution to process those inputs. Such design assignments
involved ambiguity and uncertainty where students felt unsure
about the correctness of their answers. Dealing and coping with
complexity and uncertainty are key competencies in computing
[7].

The intermediate design products served to facilitate students’
algorithmic thinking via several aspects: First, flowcharts were used
as cognitive means to translate students’ internal and vague think-
ing into explicit and step-wise solutions. Doing such, flowcharts
served to facilitate students’ sketching of the solution which was
proposed as a deep cognitive process [7]. Secondly, student-generated
flowcharts are likely to facilitate students’ social interactions by
providing opportunities for presenting ideas, collaboration, commu-
nication, sharing and exchanging their design knowledge, reason-
ing and decisions, and peer assessment. Thirdly, student-generated
design products seem useful means for documenting, organizing,
and tracing back the design decisions and reasoning of students
by generating snapshots of their design process. These products
can arguably provide explicit evidence of students’ reasoning at
three levels, namely, why (represented by their general solution or
the abstract formulation of the problem), how (represented by their
step-wise flowcharts), and what (represented by their generated
program and its outputs).

The instructional model appeared to be beneficial to students’
conceptual development in several ways: First, by using CS con-
cepts practically and putting them together to build more complex

constructs such as flowcharts or working programs. However, to un-
derstand more complex concepts such as sub-algorithms and nested
loops students require more support from their teachers. Secondly,
using intermediate design products makes students’ learning visi-
ble. This proposes these products as suitable means to implement
formative and peer assessment strategies [13].

7 CONCLUSIONS
In this study an instructional model was developed to link design
and conceptual development in secondary school CS education.
The intermediate design products can be seen as evidence of their
reasoning and design decisions at three levels of why, how, andwhat.
The model seemed to have contributed to students’ conceptual
development. Some evidence of ’shallow constructionism’ were
observed. This study will be completed by further implementation
of the materials and various sorts of results including student-
generated intermediate products to support the analysis.

REFERENCES
[1] Michael E Atwood, Robin Jeffries, Althea A Turner, and Peter G Polson. 1980.

The Processes Involved in Designing Software. Technical Report. SCIENCE APPLI-
CATIONS INC ENGLEWOOD CO.

[2] Erik Barendsen, Linda Mannila, B. Demo, N. Grgurina, C. Izu, C. Mirolo, S. Sen-
tance, A. Settle, and G. Stupurienė. 2015. Concepts in K–9 Computer Science
Education. In Proceedings of the 2015 ITiCSE on Working Group Reports. ACM,
85–116.

[3] Anders Berglund and Raymond Lister. 2010. Introductory programming and
the didactic triangle. In Proceedings of the Twelfth Australasian Conference on
Computing Education – Volume 103. Australian Computer Society, Inc., 35–44.

[4] BarryW. Boehm. 1988. A spiral model of software development and enhancement.
Computer 21, 5 (1988), 61–72.

[5] Allan Collins, John Seely Brown, and Susan E Newman. 1989. Cognitive appren-
ticeship: Teaching the crafts of reading, writing, and mathematics. Knowing,
learning, and instruction: Essays in honor of Robert Glaser 18 (1989), 32–42.

[6] Jill Denner, Linda Werner, and Eloy Ortiz. 2012. Computer games created by
middle school girls: Can they be used to measure understanding of computer
science concepts? Computers & Education 58, 1 (2012), 240–249.

[7] Clive L Dym, Alice M Agogino, Ozgur Eris, Daniel D Frey, and Larry J Leifer.
2005. Engineering design thinking, teaching, and learning. Journal of Engineering
Education 94, 1 (2005), 103–120.

[8] Vinod Goel and Peter Pirolli. 1992. The structure of design problem spaces.
Cognitive science 16, 3 (1992), 395–429.

[9] Janet L Kolodner, Paul J Camp, David Crismond, Barbara Fasse, Jackie Gray,
Jennifer Holbrook, Sadhana Puntambekar, and Mike Ryan. 2003. Problem-based
learning meets case-based reasoning in the middle-school science classroom:
Putting learning by design (tm) into practice. The journal of the learning sciences
12, 4 (2003), 495–547.

[10] Seymour Papert and Idit Harel. 1991. Situating constructionism. Constructionism
36 (1991), 1–11.

[11] Ebrahim Rahimi. 2015. A Design Framework for Personal Learning Environments.
Ph.D. Dissertation. Delft University of Technology, The Netherlands.

[12] Ebrahim Rahimi, Erik Barendsen, and Ineke Henze. 2016. Typifying Informatics
Teachers’ PCK of Designing Digital Artefacts in Dutch Upper Secondary Educa-
tion. In International Conference on Informatics in Schools: Situation, Evolution,
and Perspectives. Springer, 65–77.

[13] Ebrahim Rahimi, Erik Barendsen, and Ineke Henze. 2017. Identifying Students’
Misconceptions on Basic Algorithmic Concepts Through Flowchart Analysis.
In International Conference on Informatics in Schools: Situation, Evolution, and
Perspectives. Springer, 155–168.

[14] M Scardamalia and C Bereiter. 2006. Knowledge building: theory, pedagogy, and
technology (pp. 97-119).

[15] Matti Tedre. 2014. The science of computing: shaping a discipline. CRC Press.
[16] Josh D Tenenberg, Sally Fincher, Ken Blaha, Dennis Bouvier, Tzu-Yi Chen, Donald

Chinn, Stephen Cooper, Anna Eckerdal, Hubert Johnson, Robert McCartney, et al.
2005. Students Designing Software: a Multi-National, Multi-Institutional Study.
Informatics in Education 4, 1 (2005), 143–162.

[17] Jeroen JG Van Merriënboer. 1990. Strategies for programming instruction in
high school: Program completion vs. program generation. Journal of educational
computing research 6, 3 (1990), 265–285.

	Abstract
	1 Introduction
	2 Theoretical Background
	3 The Instructional Model
	4 The Study Setting
	5 Results
	6 Discussion
	7 Conclusions
	References

