
Identifying Students’ Misconceptions on Basic
Algorithmic Concepts Through Flowchart Analysis

Ebrahim Rahimi1, Erik Barendsen2, and Ineke Henze3

1 Radboud University, The Netherlands, e.rahimi@cs.ru.nl
2 Radboud University and Open University, The Netherlands, e.barendsen@cs.ru.nl

3 Delft University of Technology, The Netherlands, f.a.henze-rietveld@tudelft.nl

Abstract. In this paper, a flowchart-based approach to identifying secondary
school students’ misconceptions (in a broad sense) on basic algorithm concepts is
introduced. This approach uses student-generated flowcharts as the units of anal-
ysis and examines them against plan composition and construct-based program-
ming problems to identify students’ misconceptions. In this study, 102 flowcharts,
generated by 50 students in two informatics classes in the Netherlands, were ex-
amined and various sorts of misconceptions were identified. The results suggest
that, given their abstract and language-independent nature, flowcharts can be con-
sidered as an effective tool for revealing students’ difficulties in understanding al-
gorithmic concepts. Our approach contrasts the more traditional use of program
code to investigate students’ misconceptions. We found several misconceptions
mentioned in the literature, together with two misconceptions which appear not
to have been described before. Our research contributes to the usage of flowcharts
as a formative assessment tool, directing informatics teachers’ instruction toward
resolving these misconceptions.

1 Introduction

There is an ongoing global debate among educational policy makers, researchers, tech-
nology developers and practitioners around establishing computer science (CS) and in
particular computer programming as an integral part of school curricula at different lev-
els [6,1]. The advocates argue that due to the highly technology-driven and information-
dependent nature of working and living in the 21st century, learning fundamental com-
puter science concepts and programming has become a must for everyone [6]. They
argue that CS represents an essential and unprecedented sort of literacy people need
to survive in the knowledge era where thinking critically and computationally to solve
complex, ill-defined, and open-ended problems is becoming more and more important
[21]. This sort of literacy is meant to help people to not simply become technology
consumers, but also to serve as technology creators and knowledge developers [6,10].

Programming generally includes two main tasks: algorithmic problem solving and
coding. The problem solving part includes analyzing the problem, formulating a solu-
tion, and devising an algorithm for implementing the solution. The coding part consists
of implementing the devised algorithm using a programming language, debugging and
modification [15]. Algorithmic thinking thus plays an essential role in problem solving
and programming and accordingly has a key position in computational thinking notions



[21]. Despite the important role of problem solving and algorithmic thinking in pro-
gramming, in general, these aspects seem to have received less attention than coding
within CS in secondary education [18].

Flowcharts are advocated as useful pictorial representations of algorithms, the pro-
gram logic or its flow of control. They have been an integral element of programming
since the introduction of computers in 1940s [15]. Flowcharts have been used as sim-
ple and effective tools to comprehend, devise, modify, visualize, debug, express and
communicate algorithms and programs [12]. As remarked by [15], a flowchart repre-
sents ”a high level definition of the solution to be implemented on a machine” (p. 1).
Given their abstract and language-independent nature, flowcharts have been suggested
as effective tools for the novice programmers to enhance their problem solving and
algorithmic thinking competencies, and to promote a ”thinking first” approach to pro-
gramming [18]. As held by [2], flowcharting helps ”distinguish between the procedure
a computer program is written to express and the syntactical details of the language in
which the program is written” (p. 53).

The purpose of this study is to investigate the usability of flowcharts as a tool for
identifying and highlighting students’ misconceptions on basic algorithmic concepts.
Following [20], we will use the term misconception as an overall term covering stu-
dents’ lack of understanding, problems, mistakes, bugs, and difficulties with basic al-
gorithm concepts. Flowcharts can be seen as a way to get into the students’ minds and
provide a better picture of their understanding of basic computer science concepts. By
doing so, flowcharts ultimately serve to improve the quality of computer science edu-
cation through a better understanding of what goes wrong [20]. In [18] an analytical
approach to identifying programming misconceptions using flowcharts is introduced.
This approach uses two categories of plan composition and construct-based problems
introduced by [20] to detect students’ misconceptions. It was used to detect program-
ming misconceptions exhibited by 11 high school students in the Netherlands.

Our study adopted the approach introduced in [18] and modified it to detect stu-
dents’ misconceptions on each of basic algorithmic concepts including sequence, con-
dition, iteration, and sub-algorithm. To this end, 102 flowcharts generated by 50 stu-
dents in two informatics classes in the context of upper secondary education in the
Netherlands were examined.

This study is a part of a bigger research project with the main objective of encour-
aging and facilitating the learning of computer science concepts through conducting
authentic design assignments (see [9]). This study plays a multifold role in this research
project: (i) highlighting the importance of student-generated flowcharts as intermediate
design products, (ii) examining the usability of flowcharts as an effective formative as-
sessment tool, (iii) helping the teachers and researchers in identifying students’ miscon-
ceptions on basic algorithm concepts, and (iv) directing teachers instruction toward re-
solving these misconceptions. This way, applying flowcharts as a formative assessment
tool might help to further develop the teachers’ PCK (Pedagogical Content Knowledge)
[16] on algorithms.



2 Programming Misconceptions

There are worldwide observations that students, regardless of institution or country,
show generally poor performance in the introductory programming courses and learn-
ing programming is a difficult task for novices [3,17]. A reason for this difficulty stems
from the fact that programming puts a high cognitive and knowledge demand on novices
including knowledge on a specific programming language and knowledge and under-
standing of basic programming concepts and constructs such as variables, loops, condi-
tions, abstraction, and procedures. Any misconception on these constructs might result
in programming difficulties [17,18]. Therefore, realizing and resolving these miscon-
ceptions seems useful in diminishing the novices difficulties in programming.

Students’ misconceptions on basic programming constructs and features have been
vastly researched (see [4,8,11,14,17,19,20]). Four common examples of the identified
programming misconceptions include considering classes as containers for objects, re-
verse assignment, interpreting assignment statements as mathematical equations, and
boundary problem (i.e, choosing inappropriate boundary points) [17,20]. Seppälä et al.
in [13] categorized students’ errors on algorithm exercises into systematic and careless
errors (’slips’). According to [13], slips result from randomly trying out algorithm ex-
ercises by students, whereas a systematic error is ”a symptom of a misconception that
could be corrected if recognized” (p. 244). According to [20], students’ misconceptions
on programming fall in two categories: plan composition and construct-based prob-
lems. Plan composition problems refer to the encountered misconceptions in composing
a solution by putting the pieces of plans together. These misconceptions are concerned
with the solution formulation, algorithm development, and planning the semantic and
logic of the program [3]. On the other hand, construct-based problems concern with the
misconceptions on language constructs and the syntax of the program. Tables 1 and 2
summarize plan composition and construct-base problems introduced by [18,20].

However, the majority of these misconceptions have been researched and recog-
nized in the context of program’s code in specific programming languages. There are
very few studies examining the programming misconceptions at a more abstract level
such as algorithms and flowcharts (see [18]). Arguably, the sorts of misconceptions
exhibited by students in a programming language depend, to some extent, on the spec-
ifications of that programming language and might be shaped or filtered by its struc-
tures and specifications. In contrast, flowcharts provide a more abstract and language-
independent way to get into the minds of students and seem useful in gaining a firsthand
and more comprehensive picture of what goes wrong in their minds.

3 Study Setting

The participants in this study were 50 students of age 15 or 16 from two schools in
upper secondary education in the Netherlands. All of the participants were at the uni-
versity preparatory education level (VWO in Dutch) [7]. In the aforementioned sur-
rounding research project (see the introduction section), the participants were provided
with the background and design documents. The background document covered various
aspects of algorithms including the definition, basic concepts (i.e. sequence, condition,



Table 1. Plan composition problems, adopted from [20]

Misconception Description
Summarization
problem

The complex combinations of plans are summarized in terms of some
primary functions and secondary functions have been overlooked.

Optimization
problem

Novices aim to optimize their plans but do not adequately check if the
optimization can really be carried out.

Previous-
experience (or
pollution) problem

Novices constantly develop and tailor plans on the basis of previous
experience. This error is introduced when inappropriate aspects of previous
plans pollute a related plan that is being used in a new situation.

Specialization
problem

Inappropriate and incorrect customization of an abstract plan developed for
other situations.

Natural-language
problem

Errors happen during the process of mapping from natural language to a
programming language.

Boundary problem Novices difficulties for deciding on appropriate boundary points in
specializing a plan.

Unexpected case
problem

The program is not working correctly for all cases (e.g. uncommon,
unlikely, or boundary cases).

Interpretation
problem

Not considering the implicit specifications of plans or misinterpreting them.

Cognitive load
problem

Omitting and overlooking small but important parts of the plan or plan
interactions.

Table 2. Construct-based problems, adopted from [18,20]

Misconception Description
Human interpretation
problem

Novices assumption that computers are able to interpret problems as
people do.

Assignment
misconception

Inverted assignment: the positions of the giver and receiver variables at
the right and left side of the assignment operator are misplaced.

Condition
misconception

Misconceptions about how the condition construct (or control
structure) works.

Boolean statements Misconceptions on how boolean statements behave.
Loops Misconception on how a loop control variable works.
Method-related
misconceptions

Misconceptions on method calling.

Control flow Misconceptions such as incorrect use of print and return statements,
omitting arrows in a flowchart, or omitting start or stop steps.



iteration, and sub-algorithms), trace table, and flowcharts. Each of these aspects was
explained using several examples and questions with a different level of difficulty. The
design document included seven authentic design assignments in the context of text
analysis. In each assignment, students were asked to follow a step-wised approach to
learning algorithms and programming. These steps include analyzing the design prob-
lem, formulating a conceptual solution, devising an algorithm, developing a flowchart
to implement the algorithm, testing the flowchart using trace tables, and converting their
flowcharts into a program using a programming language (either PHP or Python, as the
students had learned one of these languages in the previous years). Students could use
the background document whenever necessary for explanation and advice on conduct-
ing these steps. To embed formative assessment within this educational intervention,
students were asked to answer four exit questions during their design endeavours on a
weekly basis. These questions were derived from the background document and were
meant to assess students’ understanding of basic algorithm concepts underpinning the
design assignments. In each question, the students were asked to draw a flowchart for
solving the given problem. To foster collaboration and team working, the students were
grouped into teams of 2-3 students and each team developed a flowchart for each of
the questions. The flowcharts were written on paper or developed digitally using a spe-
cific tool called Draw.io and were handed over manually or via the school’s learning
management system. The teachers then could use these flowcharts to detect students’
misconceptions and provide them with appropriate feedback. Table 3 presents these
questions and their associated algorithm concepts.

Table 3. Questions asked to investigate students’ understanding of basic algorithmic concepts

Question Concepts
Q1: Write an algorithm that receives three numbers (a, b, c) and determines
and reports the maximum and minimum numbers.

Sequence,
condition

Q2: (i) Write two sub-algorithms findmax (a,b) and findmin (a,b) which
receive two numbers a,b and determine and return the maximum and
minimum numbers, respectively. (ii) Using these sub-algorithms write an
algorithm that receives 10 numbers (i.e., a0, a1, ... , a9) and determines and
reports the maximum and minimum numbers.

Sub-algorithms,
problem
composition and
decomposition,
condition

Q3: Write an algorithm that receives a text value (i.e. t) as input and
reverses it (i.e. t = “book”, reverse of t = “koob”).

Loop, condition

The following research question directed the data collection and analysis processes:
What misconceptions can be seen in students’ flowcharts?

The flowcharts developed by the participating students in response to the questions
in Table 3 were used as the data source to answer this research question. A qualitative
deductive content analysis approach was followed to analyze the flowcharts. Content
analysis is a method used for analyzing written, verbal or visual communication mes-
sages and documents [5]. Following the process of deductive content analysis intro-
duced by [5], three steps of preparation, organization, and reporting were taken. In the
preparation step, all of the flowcharts (102 in total) as the unit of analysis were uploaded



into Atlas.ti software. In the organizing phase, first the plan composition and construct-
based problems presented in tables 1 and 2 were chosen as the initial categories for
coding the observed misconceptions in the flowcharts. Then following an iterative pro-
cess of coding and revising, the misconceptions on basic algorithm concepts observed
in the flowcharts were coded according to these categories. The coding process was
flexible to allow emerging new codes which did not exist in these categories. Possible
alternative interpretations of the observed misconceptions were discussed within the
research team until a consensus was reached. Finally, the identified misconceptions on
each of basic algorithm concepts were processed and reported as can be seen in the next
section.

4 Results

Tables 4 and 5 present the identified plan composition and construct-based problems in
the flowcharts, respectively.

Table 4. The plan composition problems observed in the flowcharts

Category Misconceptions

Condition
misconceptions

Not considering equal inputs in plans (unexpected case problem): the
situations where the equal numbers are excluded from the comparison
operations.
Incorrect adaptation (previous experience problem): refers to incorrect
applying of a previous condition-related plan in another situation.
Misinterpreting the condition concept (Interpretation problem)

Loop misconceptions Incorrect loop construction
Sub-algorithm
misconceptions

Composition problem: refers to students problems and mistakes with
composing an algorithm by putting together sub-algorithms.

Translation Mapping problem: incorrect mapping from natural language or
programming languages to flowcharts.

• Plan composition problems

(i) Condition misconceptions: Three plan composition misconceptions for the con-
dition concept were identified. Not considering equal inputs in plans is an unexpected
case problem where the equal numbers are excluded from a solution, specifically for
answering questions 1 and 2 in table 3. This was one of the most frequently observed
misconceptions in the flowcharts. Interestingly, some of the students reacted to passing
equal numbers to their flowcharts as a fatal error (see fig. 1 (a)). Incorrect adaptation
is the next condition misconception and represents a previous experience problem. Fig
1 (b) illustrates an example of this misconception where an incorrect adaptation of the
plan used for determining the maximum number (i.e. max) between a, b is used for cal-
culating the minimum number (i.e. min). Misinterpreting the logic of condition concept
is a sort of interpretation problem with regard to the condition concept, as depicted by
fig 1 (c).



Read	a,	b,	
c

a	>	b		 	AND a	>	c

True False

max	=	a min	=	a

a	>	b

b	>	a

No

(c)(b)(a)

Fig. 1. Examples of identified plan composition problems related to the condition concept

(ii) Iteration misconceptions: Incorrect loop construction is the encountered mis-
conception related to the implementation of the iteration concept. Fig 2 depicts an ex-
ample of this misconception.

Fig. 2. An example of incorrect loop implementations

(iii) sub-algorithm misconceptions: The composition problem refers to students prob-
lems, difficulties, and mistakes with composing an algorithm using its sub-algorithms.
The results showed that while many of the students devised the asked sub-algorithms
(i.e. findmax and findmin) correctly, many of them were not able to use the developed
sub-algorithms to compose the main algorithm.
(iv) Translation misconceptions: The mapping problem or incorrect translation from
formal language or programming languages to flowcharts was another plan composition
problem observed in the flowcharts. Fig 3 illustrates an example of this misconception.
Surprisingly, as shown by this example, although some of the students already know
how to program, but they cannot map their program into a flowchart.

• Construct-based Misconceptions

(i) Condition misconceptions: Missing the false part represents a misconception where
only the true output of a condition statement is addressed. Fig 4 (a) presents an ex-
ample of this misconception. The 3-output condition is another misconception where 3
possible outputs are considered for a conditional statement, as shown in fig 4 (b).

(ii) Sequence misconceptions: The sequence misconceptions were among the fre-
quent problems observed in the flowcharts. These misconceptions reflect students’ mis-
understanding about the flowchart’s flow control and sequential execution of its steps.



Fig. 3. An example of difficulty in mapping a plan from programming languages to a flowcharts

Read	a,	b,	 c

a	>	b

a	>	c

True

True

max	=	a

(a)	Missing	the	False	part (b)	 3-output	conditional	 statements

Fig. 4. Example of construct-based misconceptions for the condition concept

The parallel execution misconception reflects a perception held by some of the students
that the flowchart’s steps can run in parallel to each other, as shown by fig 5 (a). Another
observed misconception with the sequence concept is called the dense step which refers
to a flowchart’s step that executes more than one operations. Fig 5 (b) shows two exam-
ples of this misconception. It seems that in these examples the students assumed that the
flowcharts interpret these steps like what people do. The last sequence misconception
concerns with students’ issues with Input/output and start/stop steps. These issues refer
to situations where students forgot to get input, report or return the final results, forgot
to add start and stop steps in their flowcharts, or used return instead of report.

(iii) Loop misconceptions: Fig 6 illustrates an example of the identified construct-
based loop misconception. This misconception is concerned with the simultaneous ini-
tialization and check of the loop’s control variable. As can be realized from this exam-
ple, this misconception might lead to either infinite or zero-repeating loops, depending
on the value of len(word1) - 1.

(iv) Assignment misconceptions: Two construct-based misconceptions related to the
assignment operation were discerned in the flowcharts. The most occurring error in the
students flowcharts was the inverted assignment where the positions of the source and
destination variables in the right and left of the assignment operator were misplaced.
Fig. 7 (a) shows an example of this misconception. In this example the students were



i =	x	- 1	>		0

a	≠	b	≠	c

(b)	 Two	examples	of	 the	
dense	step	misconception

Read	a,	b,	 c

a	>	b

a	>	c

b	>	c

(a)	An	example	 of	the	
parallel	execution	
misconception

Fig. 5. Examples of construct-based misconceptions for the sequence concept

Table 5. The construct-based problems observed in the flowcharts

Category Misconceptions

Condition
misconceptions

Missing the False part: conditional statements where the false part (or
the else part) is missing.
3-output condition: conditional statements with 3 outputs.

Sequence
misconceptions

Dense step (Human interpreter problem): situations where more than
one operations are processed in one step.
Parallel execution of steps (flow control)
Issues with Input/output and start/stop steps (flow control)

Loop misconceptions Simultaneous initializing and checking of the loop control variable

Assignment
misconceptions

Inverted assignment: situations where the positions of the source and
destination statements of the assignment operator are misplaced.
3-output condition: conditional statements with 3 outputs.

Sub-algorithm
misconceptions

Incorrect use of sub-algorithms: for instance using a sub-algorithm at
the left side of an assignment operator.
Issues of calling/returning from sub-algorithms

Flowchart presentation Using incorrect shapes for the flowchart’s constructs

asked to find the maximum and minimum numbers among variables a, b, c and store
them in variables max and min, respectively. Another type of the observed assignment
issues is the missing value misconception where a value is processes but not stored in a
variable. Fig. 7 (b) shows an example of this misconception.

(v) Sub-algorithm misconceptions: The Incorrect use of sub-algorithms exhibits
an misunderstanding and wrong interpretation of the usage of sub-algorithms. For in-
stance, it was observed that some of the students interpreted a sub-algorithm as a vari-
able or container and used it at the left side of an assignment operator. Issues of call-
ing/returning from sub-algorithms represent another sub-algorithm misconception. Ex-
amples of this misconception include: not passing input parameters to sub-algorithms
and not returning results from sub-algorithms.

(vi) Flowchart presentation: This misconception refers to situations where incorrect
shapes were used by the students to present various constructs of their flowcharts. For
example, several students used rectangle instead of diamond for presenting conditional
statements.



i =	len (word1)	 - 1	>	 	0 Print	 (word	 [i])

i =	i - 1

Yes

Stop

No

Fig. 6. An example of the loop misconception

(a)	An	example	of	 the	inverted	assignment	misconception (b)	An	example	of	 the	missing	value	misconception

Fig. 7. Two examples of the assignment misconceptions

5 Conclusions and Discussion

In this study, a flowchart-based analysis approach, adapted from [18,20], was intro-
duced and followed to identify the misconceptions of basic algorithm concepts exhib-
ited by 50 students in upper secondary education in the Netherlands. Various types
of plan composition and construct-based misconceptions on basic algorithm concepts
have been identified in the analyzed flowcharts. The identified plan composition mis-
conceptions are not including equal numbers in plans (an unexpected case miscon-
ception), incorrect adaptation (a previous experience misconception), misinterpreting
the condition concept (an interpretation misconception), incorrect loop construction,
composition problem (i.e. devising an algorithm using sub-algorithms), and mapping
problem. The discerned construct-based misconceptions include missing the false part
of conditional statements, 3-output condition, parallel execution of steps (a flow control
misconception), dense step (a human interpreter misconception), missing input/output
and start/stop steps, incorrect initialization and checking of the loop counter, inverted
assignment, missing values, incorrect use of sub-algorithms, issues of calling/returning
from sub-algorithms, and using incorrect shapes for the flowchart’s statements.

Computer programming consists of two interconnected contexts of high level, ab-
stracted and language-independent algorithmic thinking, and detailed, step-wised, and
language-dependent coding. Our findings suggest that some of the programming mis-



conceptions at the abstract level might be filtered by specifications of programming
languages and accordingly not be visible for language-based misconceptions detecting
approaches. On the basis of our findings, it can be concluded the flowcharts, by inher-
iting and bridging between the essence and key characteristics of algorithmic thinking
and coding contexts, are useful means to detect misconceptions exhibited by students
in the solution formulation and algorithmic thinking phases.

As observed in the results section, the students exhibited various sort of plan com-
position and construct-based problems on basic algorithm concepts in their flowcharts.
The inverted assignment was the most occurring misconception encountered by the stu-
dents. The same finding has been reported by other researchers (see for example [8,17]).
Furthermore, the students showed several misconceptions related to the sub-algorithm
concept including the composition of an algorithm using sub-algorithms. Arguably, a
reason for this misconception stems from this fact that the majority of the students
did not have any previous experience of working with abstract constructs such as sub-
algorithms. Surprisingly, it has been observed that some of the students first wrote com-
puter programs and then tried to convert their programs to flowcharts.

Given the programming misconceptions presented in tables 1 and 2 as the analytical
framework, the results suggest that there are many overlaps between misconceptions en-
countered by students in the algorithmic and coding parts of the programming process.
For example, human interpretation, previous plan experience, unexpected case, and in-
verted assignment misconceptions happen similarly in both parts [18]. However, there
are two exceptions with regard to the parallel execution and dense step misconceptions.
These misconceptions represent some of the students’ assumption that flowchart’s steps
can run parallel to each other. To the best of our knowledge, these are newly identified
misconceptions and have not been reported in other studies. A possible reason for this
neglect might be due to this fact that the majority of research on programming miscon-
ceptions has been conducted in a specific programming language and the syntactical
structure and specifications of the programming language filter emerging this sort of
abstract misconceptions.

The use of flowcharts generated by groups of students as data, instead of individu-
ally generated flowcharts, can be seen as a limitation of the study. One might claim that
group dynamics might amplify or filter misconceptions arising at an individual level. A
second limitation stems from conducting the study with students who had previous ex-
perience of programming. Repeating the same study by students with less programming
experience might result in detection of other kinds of misconceptions. Other possibil-
ities for follow-up research include using the identified misconceptions to develop CS
teaching materials for the algorithmic thinking and examining their effectiveness in
resolving these misconceptions, and scrutinizing possible links between students’ ex-
hibited misconceptions in algorithmic thinking and coding phases of programming. As
to the bigger research project on design-based education, our results suggest that using
flowcharts to express intermediate design products could provide a more authentic way
to incorporate formative assessment of fundamental concepts during students’ project
work.



References
1. Barendsen, E., Grgurina, N., Tolboom, J.: A new informatics curriculum for secondary edu-

cation in the netherlands. In: International Conference on Informatics in Schools: Situation,
Evolution, and Perspectives, Springer (2016) 105–117

2. Bohl, M.: Flowcharting techniques. Science Research Associates (1971)
3. Chetty, J., van der Westhuizen, D.: Towards a pedagogical design for teaching novice pro-

grammers: design-based research as an empirical determinant for success. In: Proceedings
of the 15th Koli Calling Conference on Computing Education Research, ACM (2015) 5–12

4. Clancy, M.: Misconceptions and attitudes that interfere with learning to program. Computer
science education research (2004) 85–100

5. Elo, S., Kyngäs, H.: The qualitative content analysis process. Journal of advanced nursing
62(1) (2008) 107–115

6. Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., Settle, A.:
Computational thinking in k-9 education. In: Proceedings of the working group reports
of the 2014 on innovation & technology in computer science education conference, ACM
(2014) 1–29

7. Nuffic: The Dutch education system described (2015) Retrieved from
https://www.nuffic.nl/en/publications/find-a-publication/

education-system-the-netherlands.pdf, September 2017.
8. Putnam, R.T., Sleeman, D., Baxter, J.A., Kuspa, L.K.: A summary of misconceptions of

high school basic programmers. Journal of Educational Computing Research 2(4) (1986)
459–472

9. Rahimi, E., Barendsen, E., Henze, I.: Typifying informatics teachers’ pck of designing digital
artefacts in dutch upper secondary education. In: International Conference on Informatics in
Schools: Situation, Evolution, and Perspectives, Springer (2016) 65–77

10. Rahimi, E., van den Berg, J., Veen, W.: Investigating teachers’ perception about the educa-
tional benefits of web 2.0 personal learning environments. (2013)

11. Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: A review and
discussion. Computer science education 13(2) (2003) 137–172

12. Scanlan, D.A.: Structured flowcharts outperform pseudocode: An experimental comparison.
IEEE software 6(5) (1989) 28–36

13. Seppälä, O., Malmi, L., Korhonen, A.: Observations on student misconceptions—a case
study of the build–heap algorithm. Computer Science Education 16(3) (2006) 241–255

14. Sheard, J., Simon, S., Hamilton, M., Lönnberg, J.: Analysis of research into the teaching and
learning of programming. In: Proceedings of the fifth international workshop on Computing
education research workshop, ACM (2009) 93–104

15. Shneiderman, B., Mayer, R., McKay, D., Heller, P.: Experimental investigations of the utility
of detailed flowcharts in programming. Communications of the ACM 20(6) (1977) 373–381

16. Shulman, L.S.: Those who understand: Knowledge growth in teaching. Educational re-
searcher 15(2) (1986) 4–14

17. Sirkiä, T., Sorva, J.: Exploring programming misconceptions: an analysis of student mistakes
in visual program simulation exercises. In: Proceedings of the 12th Koli Calling International
Conference on Computing Education Research, ACM (2012) 19–28

18. Smetsers-Weeda, R.: Think... then act() flowcharts as a tool for novice programmers to
enhance their problem solving skills. Master’s thesis, TU Delft, the Netherlands (2016)

19. Sorva, J.: Notional machines and introductory programming education. ACM Transactions
on Computing Education 13(2) (2013) 8

20. Spohrer, J.C., Soloway, E.: Novice mistakes: Are the folk wisdoms correct? Communications
of the ACM 29(7) (1986) 624–632

21. Wing, J.M.: Computational thinking. Communications of the ACM 49(3) (2006) 33–35

https://www.nuffic.nl/en/publications/find-a-publication/education-system-the-netherlands.pdf
https://www.nuffic.nl/en/publications/find-a-publication/education-system-the-netherlands.pdf

	Identifying Students' Misconceptions on Basic Algorithmic Concepts Through Flowchart Analysis

